IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v257y2015icp199-204.html
   My bibliography  Save this article

On a time fractional reaction diffusion equation

Author

Listed:
  • Ahmad, B.
  • Alhothuali, M.S.
  • Alsulami, H.H.
  • Kirane, M.
  • Timoshin, S.

Abstract

A reaction diffusion equation with a Caputo fractional derivative in time and with various boundary conditions is considered. Under some conditions on the initial data, we show that solutions may experience blow-up in a finite time. However, for realistic initial conditions, solutions are global in time. Moreover, the asymptotic behavior of bounded solutions will be analyzed.

Suggested Citation

  • Ahmad, B. & Alhothuali, M.S. & Alsulami, H.H. & Kirane, M. & Timoshin, S., 2015. "On a time fractional reaction diffusion equation," Applied Mathematics and Computation, Elsevier, vol. 257(C), pages 199-204.
  • Handle: RePEc:eee:apmaco:v:257:y:2015:i:c:p:199-204
    DOI: 10.1016/j.amc.2014.06.099
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300314009436
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2014.06.099?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lenzi, E.K. & Menechini Neto, R. & Tateishi, A.A. & Lenzi, M.K. & Ribeiro, H.V., 2016. "Fractional diffusion equations coupled by reaction terms," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 458(C), pages 9-16.
    2. Belmahi, Naziha & Shawagfeh, Nabil, 2021. "A new mathematical model for the glycolysis phenomenon involving Caputo fractional derivative: Well posedness, stability and bifurcation," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    3. Chen, Xuehui & Zhu, Hongli & Zhang, Xinru & Zhao, Lutao, 2022. "A novel time-varying FIGARCH model for improving volatility predictions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 589(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:257:y:2015:i:c:p:199-204. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.