IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v256y2015icp232-246.html
   My bibliography  Save this article

Approximate controllability of a class of fractional neutral stochastic integro-differential inclusions with infinite delay by using Mainardi’s function

Author

Listed:
  • Balasubramaniam, P.
  • Tamilalagan, P.

Abstract

In this paper, we formulate a new set of sufficient conditions for the approximate controllability of a class of fractional neutral stochastic integro-differential inclusions with infinite delay in Hilbert space. Bohnenblust–Karlin’s fixed point theorem, Mainardi’s function, fractional calculus and operator semigroups are used to establish the results under the assumption that the corresponding linear system is approximately controllable. In the end, an example is provided to illustrate the applicability of the obtained theoretical results.

Suggested Citation

  • Balasubramaniam, P. & Tamilalagan, P., 2015. "Approximate controllability of a class of fractional neutral stochastic integro-differential inclusions with infinite delay by using Mainardi’s function," Applied Mathematics and Computation, Elsevier, vol. 256(C), pages 232-246.
  • Handle: RePEc:eee:apmaco:v:256:y:2015:i:c:p:232-246
    DOI: 10.1016/j.amc.2015.01.035
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300315000491
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2015.01.035?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Y.-K. Chang & J. J. Nieto & W.-S. Li, 2009. "On Impulsive Hyperbolic Differential Inclusions with Nonlocal Initial Conditions," Journal of Optimization Theory and Applications, Springer, vol. 140(3), pages 431-442, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sivajiganesan Sivasankar & Ramalingam Udhayakumar, 2022. "Hilfer Fractional Neutral Stochastic Volterra Integro-Differential Inclusions via Almost Sectorial Operators," Mathematics, MDPI, vol. 10(12), pages 1-19, June.
    2. Tamilalagan, P. & Balasubramaniam, P., 2017. "Moment stability via resolvent operators of fractional stochastic differential inclusions driven by fractional Brownian motion," Applied Mathematics and Computation, Elsevier, vol. 305(C), pages 299-307.
    3. Shukla, Anurag & Vijayakumar, V. & Nisar, Kottakkaran Sooppy, 2022. "A new exploration on the existence and approximate controllability for fractional semilinear impulsive control systems of order r∈(1,2)," Chaos, Solitons & Fractals, Elsevier, vol. 154(C).
    4. Dimplekumar Chalishajar & Annamalai Anguraj & Kandasamy Malar & Kulandhivel Karthikeyan, 2016. "A Study of Controllability of Impulsive Neutral Evolution Integro-Differential Equations with State-Dependent Delay in Banach Spaces," Mathematics, MDPI, vol. 4(4), pages 1-16, October.
    5. Lu, Liang & Liu, Zhenhai & Bin, Maojun, 2016. "Approximate controllability for stochastic evolution inclusions of Clarke’s subdifferential type," Applied Mathematics and Computation, Elsevier, vol. 286(C), pages 201-212.
    6. Dineshkumar, Chendrayan & Jeong, Jae Hoon & Joo, Young Hoon, 2024. "Stochastic exponential stabilization and optimal control results for a class of fractional order equations," Chaos, Solitons & Fractals, Elsevier, vol. 185(C).
    7. Lu, Liang & Liu, Zhenhai, 2015. "Existence and controllability results for stochastic fractional evolution hemivariational inequalities," Applied Mathematics and Computation, Elsevier, vol. 268(C), pages 1164-1176.
    8. Vijayakumar, V. & Udhayakumar, R., 2020. "Results on approximate controllability for non-densely defined Hilfer fractional differential system with infinite delay," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    9. Ge, Fu-Dong & Zhou, Hua-Cheng & Kou, Chun-Hai, 2016. "Approximate controllability of semilinear evolution equations of fractional order with nonlocal and impulsive conditions via an approximating technique," Applied Mathematics and Computation, Elsevier, vol. 275(C), pages 107-120.
    10. Sathiyaraj, T. & Fečkan, Michal & Wang, JinRong, 2020. "Null controllability results for stochastic delay systems with delayed perturbation of matrices," Chaos, Solitons & Fractals, Elsevier, vol. 138(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alka Chadha & Dwijendra N. Pandey, 2018. "Approximate Controllability of a Neutral Stochastic Fractional Integro-Differential Inclusion with Nonlocal Conditions," Journal of Theoretical Probability, Springer, vol. 31(2), pages 705-740, June.
    2. Y. K. Chang & W. S. Li, 2010. "Solvability for Impulsive Neutral Integro-Differential Equations with State-Dependent Delay via Fractional Operators," Journal of Optimization Theory and Applications, Springer, vol. 144(3), pages 445-459, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:256:y:2015:i:c:p:232-246. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.