IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v254y2015icp452-458.html
   My bibliography  Save this article

Several iterative methods with memory using self-accelerators

Author

Listed:
  • Soleymani, F.
  • Lotfi, T.
  • Tavakoli, E.
  • Khaksar Haghani, F.

Abstract

We derive new iterative methods with memory for approximating a simple zero of a nonlinear single variable function. To this end, we first consider several modifications on some existing optimal classes without memory in such a way that their extensions to cases with memory could obtain the higher efficiency index 1214≈1.86120. Furthermore, we construct our main method with memory using three self-accelerators. It is demonstrated that this new scheme possesses the very high efficiency index 7.2381413≈1.93438.

Suggested Citation

  • Soleymani, F. & Lotfi, T. & Tavakoli, E. & Khaksar Haghani, F., 2015. "Several iterative methods with memory using self-accelerators," Applied Mathematics and Computation, Elsevier, vol. 254(C), pages 452-458.
  • Handle: RePEc:eee:apmaco:v:254:y:2015:i:c:p:452-458
    DOI: 10.1016/j.amc.2015.01.045
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300315000594
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2015.01.045?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xiaofeng Wang & Qiannan Fan, 2020. "A Modified Ren’s Method with Memory Using a Simple Self-Accelerating Parameter," Mathematics, MDPI, vol. 8(4), pages 1-12, April.
    2. Alicia Cordero & Javier G. Maimó & Juan R. Torregrosa & María P. Vassileva, 2019. "Iterative Methods with Memory for Solving Systems of Nonlinear Equations Using a Second Order Approximation," Mathematics, MDPI, vol. 7(11), pages 1-12, November.
    3. Xiaofeng Wang & Yuxi Tao, 2020. "A New Newton Method with Memory for Solving Nonlinear Equations," Mathematics, MDPI, vol. 8(1), pages 1-9, January.
    4. Malik Zaka Ullah & Vali Torkashvand & Stanford Shateyi & Mir Asma, 2022. "Using Matrix Eigenvalues to Construct an Iterative Method with the Highest Possible Efficiency Index Two," Mathematics, MDPI, vol. 10(9), pages 1-15, April.
    5. Xiaofeng Wang & Mingming Zhu, 2020. "Two Iterative Methods with Memory Constructed by the Method of Inverse Interpolation and Their Dynamics," Mathematics, MDPI, vol. 8(7), pages 1-12, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:254:y:2015:i:c:p:452-458. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.