IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v254y2015icp172-182.html
   My bibliography  Save this article

Beta-type polynomials and their generating functions

Author

Listed:
  • Simsek, Yilmaz

Abstract

We construct generating functions for beta-type rational functions and the beta polynomials. By using these generating functions, we derive a collection of functional equations and PDEs. By using these functional equations and PDEs, we give derivative formulas, a recurrence relation and a variety of identities related to these polynomials. We also give a relation between the beta-type rational functions and the Bernstein basis functions. Integrating these identities and relations, we derive various combinatorial sums involving binomial coefficients, some old and some new, for the beta-type rational functions and the Bernstein basis functions. Finally, by applying the Laplace transform to these generating functions, we obtain two series representations for the beta-type rational functions.

Suggested Citation

  • Simsek, Yilmaz, 2015. "Beta-type polynomials and their generating functions," Applied Mathematics and Computation, Elsevier, vol. 254(C), pages 172-182.
  • Handle: RePEc:eee:apmaco:v:254:y:2015:i:c:p:172-182
    DOI: 10.1016/j.amc.2014.12.118
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300314017792
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2014.12.118?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mehar Chand & Hanaa Hachimi & Rekha Rani, 2018. "New Extension of Beta Function and Its Applications," International Journal of Mathematics and Mathematical Sciences, Hindawi, vol. 2018, pages 1-25, December.
    2. Mariem Tounsi, 2020. "The Extended Matrix-Variate Beta Probability Distribution on Symmetric Matrices," Methodology and Computing in Applied Probability, Springer, vol. 22(2), pages 647-676, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:254:y:2015:i:c:p:172-182. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.