IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v253y2015icp102-115.html
   My bibliography  Save this article

Vector-valued Gabor frames associated with periodic subsets of the real line

Author

Listed:
  • Li, Yun-Zhang
  • Zhang, Yan

Abstract

The notion of vector-valued frame (also called superframe) was first introduced by Balan in the context of multiplexing. It has significant applications in mobile communication, satellite communication, and computer area network. For vector-valued Gabor analysis, existent literatures mostly focus on L2(R,CL) instead of its subspace. Let a>0, and S be an aZ-periodic measurable set in R (i.e. S+aZ=S). This paper addresses Gabor frames in L2(S,CL) with rational time–frequency product. They can model vector-valued signals to appear periodically but intermittently. And the projections of Gabor frames in L2(R,CL) onto L2(S,CL) cannot cover all Gabor frames in L2(S,CL) if S≠R. By introducing a suitable Zak transform matrix, we characterize completeness and frame condition of Gabor systems, obtain a necessary and sufficient condition on Gabor duals of type I (resp. II) for a general Gabor frame, and establish a parametrization expression of Gabor duals of type I (resp. II). All our conclusions are closely related to corresponding Zak transform matrices. This allows us to easily realize these conclusions by designing the corresponding matrix-valued functions. An example theorem is also presented to illustrate the efficiency of our method.

Suggested Citation

  • Li, Yun-Zhang & Zhang, Yan, 2015. "Vector-valued Gabor frames associated with periodic subsets of the real line," Applied Mathematics and Computation, Elsevier, vol. 253(C), pages 102-115.
  • Handle: RePEc:eee:apmaco:v:253:y:2015:i:c:p:102-115
    DOI: 10.1016/j.amc.2014.12.046
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300314017007
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2014.12.046?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Qiaofang Lian & Zhao Wang, 2018. "Generalized super Gabor duals with bounded invertible operators," Indian Journal of Pure and Applied Mathematics, Springer, vol. 49(3), pages 413-430, September.
    2. Perraudin, Nathanaël & Holighaus, Nicki & Søndergaard, Peter L. & Balazs, Peter, 2018. "Designing Gabor windows using convex optimization," Applied Mathematics and Computation, Elsevier, vol. 330(C), pages 266-287.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:253:y:2015:i:c:p:102-115. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.