IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v251y2015icp507-520.html
   My bibliography  Save this article

Dynamical aspects of some convex acceleration methods as purely iterative algorithm for Newton’s maps

Author

Listed:
  • Honorato, Gerardo
  • Plaza, Sergio

Abstract

In this paper we define purely iterative algorithm for Newton’s maps which is a slight modification of the concept of purely iterative algorithm due to Smale. For this, we use a characterization of rational maps which arise from Newton’s method applied to complex polynomials. We prove the Scaling Theorem for purely iterative algorithm for Newton’s map. Then we focus our study in dynamical aspects of three root-finding iterative methods viewed as a purely iterative algorithm for Newton’s map: Whittaker’s iterative method, the super-Halley iterative method and a modification of the latter. We give a characterization of the attracting fixed points which correspond to the roots of a polynomial. Also, numerical examples are included in order to show how to use the characterization of fixed points. Finally, we give a description of the parameter spaces of the methods under study applied to a one-parameter family of generic cubic polynomials.

Suggested Citation

  • Honorato, Gerardo & Plaza, Sergio, 2015. "Dynamical aspects of some convex acceleration methods as purely iterative algorithm for Newton’s maps," Applied Mathematics and Computation, Elsevier, vol. 251(C), pages 507-520.
  • Handle: RePEc:eee:apmaco:v:251:y:2015:i:c:p:507-520
    DOI: 10.1016/j.amc.2014.11.083
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300314016154
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2014.11.083?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sergio Amat & Rodrigo Castro & Gerardo Honorato & Á. A. Magreñán, 2020. "Purely Iterative Algorithms for Newton’s Maps and General Convergence," Mathematics, MDPI, vol. 8(7), pages 1-27, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:251:y:2015:i:c:p:507-520. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.