IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v96y2009i3p533-538.html
   My bibliography  Save this article

Effects of hysteresis on redistribution of soil moisture and deep percolation at continuous and pulse drip irrigation

Author

Listed:
  • Elmaloglou, S.
  • Diamantopoulos, E.

Abstract

The infiltration and redistribution of soil moisture under surface drip irrigation considering hysteresis were investigated in two soils (loamy sand and silt loam) of different texture. The effect of continuous versus intermittent application of 1, 2 and 4 l/h to the soils was evaluated in terms of wetting front advance patterns and deep percolation under the root zone. For this purpose, a cylindrical flow model incorporating hysteresis in the soil water retention characteristic curve, evaporation from the soil surface, and water extraction by roots was used. The results show that, compared with continuous irrigation, pulse irrigation slightly reduces the water losses under the root zone in both cases (with and without hysteresis). Also, at the total simulation time, in both types of irrigation, hysteresis reduces significantly the water losses under the root zone. Finally, the effect of hysteresis was found to be greater at higher discharge rate (4 l/h) and consequently at higher water content at the soil surface.

Suggested Citation

  • Elmaloglou, S. & Diamantopoulos, E., 2009. "Effects of hysteresis on redistribution of soil moisture and deep percolation at continuous and pulse drip irrigation," Agricultural Water Management, Elsevier, vol. 96(3), pages 533-538, March.
  • Handle: RePEc:eee:agiwat:v:96:y:2009:i:3:p:533-538
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378-3774(08)00205-9
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Elmaloglou, S. & Diamantopoulos, E., 2007. "Wetting front advance patterns and water losses by deep percolation under the root zone as influenced by pulsed drip irrigation," Agricultural Water Management, Elsevier, vol. 90(1-2), pages 160-163, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lesheng An & Kaihua Liao & Chun Liu, 2021. "Responses of Soil Infiltration to Water Retention Characteristics, Initial Conditions, and Boundary Conditions," Land, MDPI, vol. 10(4), pages 1-12, April.
    2. Wang, Haitao & Qiu, Xuefeng & Liang, Xiaoyang & Wang, Hang & Wang, Jiandong, 2024. "Biogas slurry change the transport and distribution of soil water under drip irrigation," Agricultural Water Management, Elsevier, vol. 294(C).
    3. Kisi, Ozgur & Khosravinia, Payam & Heddam, Salim & Karimi, Bakhtiar & Karimi, Nazir, 2021. "Modeling wetting front redistribution of drip irrigation systems using a new machine learning method: Adaptive neuro- fuzzy system improved by hybrid particle swarm optimization – Gravity search algor," Agricultural Water Management, Elsevier, vol. 256(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kuklik, Vaclav & Hoang, Thai Dai, 2014. "Soil moisture regimes under point irrigation," Agricultural Water Management, Elsevier, vol. 134(C), pages 42-49.
    2. Gheysari, Mahdi & Pirnajmedin, Fatemeh & Movahedrad, Hamid & Majidi, Mohammad Mahdi & Zareian, Mohammad Javad, 2021. "Crop yield and irrigation water productivity of silage maize under two water stress strategies in semi-arid environment: Two different pot and field experiments," Agricultural Water Management, Elsevier, vol. 255(C).
    3. Phogat, V. & Skewes, Mark A. & Mahadevan, M. & Cox, J.W., 2013. "Evaluation of soil plant system response to pulsed drip irrigation of an almond tree under sustained stress conditions," Agricultural Water Management, Elsevier, vol. 118(C), pages 1-11.
    4. Egea, Gregorio & Diaz-Espejo, Antonio & Fernández, José E., 2016. "Soil moisture dynamics in a hedgerow olive orchard under well-watered and deficit irrigation regimes: Assessment, prediction and scenario analysis," Agricultural Water Management, Elsevier, vol. 164(P2), pages 197-211.
    5. García-Prats, Alberto & Guillem-Picó, Santiago, 2016. "Adaptation of pressurized irrigation networks to new strategies of irrigation management: Energy implications of low discharge and pulsed irrigation," Agricultural Water Management, Elsevier, vol. 169(C), pages 52-60.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:96:y:2009:i:3:p:533-538. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.