IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v96y2009i2p299-306.html
   My bibliography  Save this article

Comparison of measured and simulated water storage in dryland terraces of the Loess Plateau, China

Author

Listed:
  • Lü, Haishen
  • Zhu, Yonghua
  • Skaggs, Todd H.
  • Yu, Zhongbo

Abstract

In the hilly regions of China, developing sustainable agriculture requires implementing conservation management practices that prevent soil erosion and conserve soil and water resources. In the semiarid northwest Loess Plateau, the primary conservation management practice is terracing. Numerical simulation of soil water dynamics in terraces is potentially an efficient means of investigating the effects of terrace design on moisture retention, but little information is available on the accuracy of such simulations. In this work, we evaluated the accuracy of HYDRUS-2D simulations of water infiltration and redistribution in fallow, level, dryland terraces located in the Loess Plateau. The simulated soil water content distributions were in good agreement with experimental data. Modeling analyses showed that about one-third of the evaporative water losses occurred from the terrace riser surface. To prevent such losses, it is advisable to mulch the riser and minimize the riser surface area. The simulations also demonstrated that with other dimensions equal, wide terraces retain more water on a percentage basis than narrow ones due to a lower evaporating surface area are per unit volume of water storage. With other design considerations being equal, wide beds and minimal riser surface areas will likely enhance water capture and retention. Future analyses of terrace moisture dynamics may additionally include simulations of root water uptake, surface ponding, and runoff.

Suggested Citation

  • Lü, Haishen & Zhu, Yonghua & Skaggs, Todd H. & Yu, Zhongbo, 2009. "Comparison of measured and simulated water storage in dryland terraces of the Loess Plateau, China," Agricultural Water Management, Elsevier, vol. 96(2), pages 299-306, February.
  • Handle: RePEc:eee:agiwat:v:96:y:2009:i:2:p:299-306
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378-3774(08)00201-1
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liu, Chang-An & Li, Feng-Rui & Zhou, Li-Min & Zhang, Rong-He & Yu-Jia, & Lin, Shi-Ling & Wang, Li-Jun & Siddique, Kadambot H.M. & Li, Feng-Min, 2013. "Effect of organic manure and fertilizer on soil water and crop yields in newly-built terraces with loess soils in a semi-arid environment," Agricultural Water Management, Elsevier, vol. 117(C), pages 123-132.
    2. Michael S. O’Donnell & Daniel J. Manier, 2022. "Spatial Estimates of Soil Moisture for Understanding Ecological Potential and Risk: A Case Study for Arid and Semi-Arid Ecosystems," Land, MDPI, vol. 11(10), pages 1-37, October.
    3. Dan Wu & Wei Wei & Zongshan Li & Qindi Zhang, 2023. "Coupling Effects of Terracing and Vegetation on Soil Ecosystem Multifunctionality in the Loess Plateau, China," Sustainability, MDPI, vol. 15(2), pages 1-13, January.
    4. Strack, Timo & Stoll, Manfred, 2022. "Soil water dynamics and drought stress response of Vitis vinifera L. in steep slope vineyard systems," Agricultural Water Management, Elsevier, vol. 274(C).
    5. Xuan Fang & Zhujun Gu & Ying Zhu, 2023. "Quantification of Agricultural Terrace Degradation in the Loess Plateau Using UAV-Based Digital Elevation Model and Imagery," Sustainability, MDPI, vol. 15(14), pages 1-16, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:96:y:2009:i:2:p:299-306. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.