IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v95y2008i5p575-586.html
   My bibliography  Save this article

Water balance of the olive tree-annual crop association: A modeling approach

Author

Listed:
  • Abid Karray, J.
  • Lhomme, J.P.
  • Masmoudi, M.M.
  • Mechlia, N. Ben

Abstract

Water transfers within mixed crops systems are complicated to understand due to the large number of complex interactions between the various components. Standard techniques fail to provide the proper assessment of the components of the water balance. Experiments and modeling developments are used to understand the dynamics of water transfers within the association of olive trees with annual crops under irrigation in Central Tunisia. The whole system is represented by a unit area made up of three components: a plot with the annual crop, a plot with the olive tree and a plot of bare soil. The modeling approach is based on the concept of reservoir. The model works on a daily time step and accounts for the lateral transfers of water occurring between the components of the system: (i) the water uptake by the roots of olive trees; (ii) the physical flow of water between the irrigated plot and the non-irrigated ones. A field experiment was carried out during 2 years (2002, 2003) and three crop cycles (spring potato, spring pea and autumn potato) in order to calibrate the model and test its validity. Olive tree transpiration was estimated from sap flow measurements and soil moisture in the different compartments was measured by neutron probe technique. The experimental data compare fairly well with the model outputs. The first purpose of the model is to understand the functioning of the olive tree-annual crop association from a water standpoint, but it can be easily extended to other intercropping systems mixing perennial vegetation with annual crops or used as a management tool. The estimates of the water extracted by the olive trees in each reservoir appear to be much more significant than those of the water physically transferred between reservoirs.

Suggested Citation

  • Abid Karray, J. & Lhomme, J.P. & Masmoudi, M.M. & Mechlia, N. Ben, 2008. "Water balance of the olive tree-annual crop association: A modeling approach," Agricultural Water Management, Elsevier, vol. 95(5), pages 575-586, May.
  • Handle: RePEc:eee:agiwat:v:95:y:2008:i:5:p:575-586
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378-3774(07)00321-6
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Palomo, M. J. & Moreno, F. & Fernandez, J. E. & Diaz-Espejo, A. & Giron, I. F., 2002. "Determining water consumption in olive orchards using the water balance approach," Agricultural Water Management, Elsevier, vol. 55(1), pages 15-35, May.
    2. Fernandez, J. E. & Palomo, M. J. & Diaz-Espejo, A. & Clothier, B. E. & Green, S. R. & Giron, I. F. & Moreno, F., 2001. "Heat-pulse measurements of sap flow in olives for automating irrigation: tests, root flow and diagnostics of water stress," Agricultural Water Management, Elsevier, vol. 51(2), pages 99-123, October.
    3. Kijne, J. W. & Barker, R. & Molden. D., 2003. "Water productivity in agriculture: limits and opportunities for improvement," IWMI Books, Reports H032631, International Water Management Institute.
    4. Ong, C. K. & Swallow, B. M., 2003. "Water productivity in forestry and agroforestry," IWMI Books, Reports H032644, International Water Management Institute.
    5. Kijne, Jacob W. & Barker, Randolph & Molden, David J. (ed.), 2003. "Water productivity in agriculture: limits and opportunities for improvement," IWMI Books, International Water Management Institute, number 138054.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Jiang & Wang, Xinxin & Bai, Liangliang & Mao, Xiaomin, 2017. "Quantification of lateral seepage from farmland during maize growing season in arid region," Agricultural Water Management, Elsevier, vol. 191(C), pages 85-97.
    2. Er-Raki, S. & Chehbouni, A. & Boulet, G. & Williams, D.G., 2010. "Using the dual approach of FAO-56 for partitioning ET into soil and plant components for olive orchards in a semi-arid region," Agricultural Water Management, Elsevier, vol. 97(11), pages 1769-1778, November.
    3. Xue, Bing & Jiang, Yan & Wang, Qijie & Ma, Bin & Liang, Xue & Hou, Zhen’an & Li, Fangfang & Cui, Yirui, 2023. "Quantification of the water exchange in an agroforestry system under the background of film-mulching drip irrigation of farmland," Agricultural Water Management, Elsevier, vol. 290(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Descheemaeker, K. & Bunting, S. W. & Bindraban, P. & Muthuri, C. & Molden, D. & Beveridge, M. & van Brakel, Martin & Herrero, M. & Clement, Floriane & Boelee, Eline & Jarvis, D. I., 2013. "Increasing water productivity in Agriculture," Book Chapters,, International Water Management Institute.
    2. Rodriguez-Dominguez, C.M. & Ehrenberger, W. & Sann, C. & Rüger, S. & Sukhorukov, V. & Martín-Palomo, M.J. & Diaz-Espejo, A. & Cuevas, M.V. & Torres-Ruiz, J.M. & Perez-Martin, A. & Zimmermann, U. & Fer, 2012. "Concomitant measurements of stem sap flow and leaf turgor pressure in olive trees using the leaf patch clamp pressure probe," Agricultural Water Management, Elsevier, vol. 114(C), pages 50-58.
    3. Mohammad Alauddin & Upali A. Amarasinghe & Bharat R. Sharma, 2014. "Four decades of rice water productivity in Bangladesh: A spatio-temporal analysis of district level panel data," Economic Analysis and Policy, Elsevier, vol. 44(1), pages 51-64.
    4. Kumar, M. Dinesh & Singh, O.P. & Samad, Madar & Purohit, Chaitali & Didyala, Malkit Singh, 2009. "Water productivity of irrigated agriculture in India: potential areas for improvement," Book Chapters,, International Water Management Institute.
    5. T. Fowe & I. Nouiri & B. Ibrahim & H. Karambiri & J. Paturel, 2015. "OPTIWAM: An Intelligent Tool for Optimizing Irrigation Water Management in Coupled Reservoir–Groundwater Systems," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(10), pages 3841-3861, August.
    6. Scheierling, Susanne M. & Treguer, David O. & Booker, James F. & Decker, Elisabeth, 2014. "How to assess agricultural water productivity ? looking for water in the agricultural productivity and efficiency literature," Policy Research Working Paper Series 6982, The World Bank.
    7. Manel Ben Hassen & Federica Monaco & Arianna Facchi & Marco Romani & Giampiero Valè & Guido Sali, 2017. "Economic Performance of Traditional and Modern Rice Varieties under Different Water Management Systems," Sustainability, MDPI, vol. 9(3), pages 1-10, February.
    8. Molden, David & Sakthivadivel, Ramasamy & Samad, Madar & Burton, Martin, 2005. "Phases of river basin development: the need for adaptive institutions," Book Chapters,, International Water Management Institute.
    9. Trigo-Córdoba, Emiliano & Bouzas-Cid, Yolanda & Orriols-Fernández, Ignacio & Mirás-Avalos, José Manuel, 2015. "Effects of deficit irrigation on the performance of grapevine (Vitis vinifera L.) cv. ‘Godello’ and ‘Treixadura’ in Ribeiro, NW Spain," Agricultural Water Management, Elsevier, vol. 161(C), pages 20-30.
    10. Kang, Shaozhong & Hao, Xinmei & Du, Taisheng & Tong, Ling & Su, Xiaoling & Lu, Hongna & Li, Xiaolin & Huo, Zailin & Li, Sien & Ding, Risheng, 2017. "Improving agricultural water productivity to ensure food security in China under changing environment: From research to practice," Agricultural Water Management, Elsevier, vol. 179(C), pages 5-17.
    11. Ghahroodi, E. Mokari & Noory, H. & Liaghat, A.M., 2015. "Performance evaluation study and hydrologic and productive analysis of irrigation systems at the Qazvin irrigation network (Iran)," Agricultural Water Management, Elsevier, vol. 148(C), pages 189-195.
    12. Geerts, S. & Raes, D. & Garcia, M., 2010. "Using AquaCrop to derive deficit irrigation schedules," Agricultural Water Management, Elsevier, vol. 98(1), pages 213-216, December.
    13. Choudhury, B.U. & Singh, Anil Kumar & Pradhan, S., 2013. "Estimation of crop coefficients of dry-seeded irrigated rice–wheat rotation on raised beds by field water balance method in the Indo-Gangetic plains, India," Agricultural Water Management, Elsevier, vol. 123(C), pages 20-31.
    14. World Bank, 2012. "Uganda : Country Environmental Analysis," World Bank Publications - Reports 12407, The World Bank Group.
    15. Trivedi, Kairav & Singh, O. P., 2008. "Impact of quality and reliability of irrigation on field and farm level water productivity of crops," IWMI Conference Proceedings 245275, International Water Management Institute.
    16. Ahmad, Mirza Junaid & Iqbal, Muhammad Anjum & Choi, Kyung Sook, 2020. "Climate-driven constraints in sustaining future wheat yield and water productivity," Agricultural Water Management, Elsevier, vol. 231(C).
    17. Kumar, M. Dinesh & Trivedi, K. & Singh, O. P., 2009. "Analyzing the impact of quality and reliability of irrigation water on crop water productivity using an irrigation quality index," IWMI Books, Reports H042636, International Water Management Institute.
    18. Battude, Marjorie & Al Bitar, Ahmad & Brut, Aurore & Tallec, Tiphaine & Huc, Mireille & Cros, Jérôme & Weber, Jean-Jacques & Lhuissier, Ludovic & Simonneaux, Vincent & Demarez, Valérie, 2017. "Modeling water needs and total irrigation depths of maize crop in the south west of France using high spatial and temporal resolution satellite imagery," Agricultural Water Management, Elsevier, vol. 189(C), pages 123-136.
    19. Eric Njuki & Boris E. Bravo-Ureta, 2019. "Examining irrigation productivity in U.S. agriculture using a single-factor approach," Journal of Productivity Analysis, Springer, vol. 51(2), pages 125-136, June.
    20. Kumar, M. Dinesh & van Dam, J. C., 2009. "Improving water productivity in agriculture in India: beyond \u2018more crop per drop\u2019," IWMI Books, Reports H042639, International Water Management Institute.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:95:y:2008:i:5:p:575-586. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.