IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v65y2004i2p133-143.html
   My bibliography  Save this article

Dry-period irrigation and fertilizer application affect water use and yield of spring wheat in semi-arid regions

Author

Listed:
  • Li, Zi-Zhen
  • Li, Wei-De
  • Li, Wen-Long

Abstract

No abstract is available for this item.

Suggested Citation

  • Li, Zi-Zhen & Li, Wei-De & Li, Wen-Long, 2004. "Dry-period irrigation and fertilizer application affect water use and yield of spring wheat in semi-arid regions," Agricultural Water Management, Elsevier, vol. 65(2), pages 133-143, March.
  • Handle: RePEc:eee:agiwat:v:65:y:2004:i:2:p:133-143
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378-3774(03)00218-X
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Li, Jiusheng, 1998. "Modeling crop yield as affected by uniformity of sprinkler irrigation system," Agricultural Water Management, Elsevier, vol. 38(2), pages 135-146, December.
    2. Hussain, Ghulam & Al-Jaloud, Ali A., 1995. "Effect of irrigation and nitrogen on water use efficiency of wheat in Saudi Arabia," Agricultural Water Management, Elsevier, vol. 27(2), pages 143-153, June.
    3. Recio, B. & Rubio, F. & Lomban, J. & Ibanez, J., 1999. "An econometric irrigated crop allocation model for analyzing the impact of water restriction policies," Agricultural Water Management, Elsevier, vol. 42(1), pages 47-63, September.
    4. Aase, J. K. & Pikul, J. L., 2000. "Water use in a modified summer fallow system on semiarid northern Great Plains," Agricultural Water Management, Elsevier, vol. 43(3), pages 345-357, April.
    5. de Juan, J. A. & Tarjuelo, J. M. & Ortega, J. F. & Valiente, M. & Carrion, P., 1999. "Management of water consumption in agriculture: A model for the economic optimisation of water use: application to a sub-humid area," Agricultural Water Management, Elsevier, vol. 40(2-3), pages 303-313, May.
    6. Katerji, N. & van Hoorn, J. W. & Hamdy, A. & Mastrorilli, M. & Karam, F., 1998. "Salinity and drought, a comparison of their effects on the relationship between yield and evapotranspiration," Agricultural Water Management, Elsevier, vol. 36(1), pages 45-54, February.
    7. Stephens, William & Hess, Tim, 1999. "Systems approaches to water management research," Agricultural Water Management, Elsevier, vol. 40(1), pages 3-13, March.
    8. Li, Feng-Min & Yan, Xun & Li, Feng-Rui & Guo, An-Hong, 2001. "Effects of different water supply regimes on water use and yield performance of spring wheat in a simulated semi-arid environment," Agricultural Water Management, Elsevier, vol. 47(1), pages 25-35, February.
    9. Fernandez, J. E. & Moreno, F. & Murillo, J. M. & Cayuela, J. A. & Fernandez-Boy, E. & Cabrera, F., 1996. "Water use and yield of maize with two levels of nitrogen fertilization in SW Spain," Agricultural Water Management, Elsevier, vol. 29(2), pages 215-233, January.
    10. Li, Feng-Min & Song, Qiu-Hua & Liu, Hong-Sheng & Li, Feng-Rui & Liu, Xiao-Lan, 2001. "Effects of pre-sowing irrigation and phosphorus application on water use and yield of spring wheat under semi-arid conditions," Agricultural Water Management, Elsevier, vol. 49(3), pages 173-183, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wakeyo, Mekonnen B. & Gardebroek, Cornelis, 2013. "Does water harvesting induce fertilizer use among smallholders? Evidence from Ethiopia," Agricultural Systems, Elsevier, vol. 114(C), pages 54-63.
    2. Li, Wenlong & Han, Xiaozhuo & Zhang, Yanyu & Li, Zizhen, 2007. "Effects of elevated CO2 concentration, irrigation and nitrogenous fertilizer application on the growth and yield of spring wheat in semi-arid areas," Agricultural Water Management, Elsevier, vol. 87(1), pages 106-114, January.
    3. Yang, Jian & Mao, Xiaomin & Wang, Kai & Yang, Weicai, 2018. "The coupled impact of plastic film mulching and deficit irrigation on soil water/heat transfer and water use efficiency of spring wheat in Northwest China," Agricultural Water Management, Elsevier, vol. 201(C), pages 232-245.
    4. Sharma, Bharat & Molden, D. & Cook, Simon, 2015. "Water use efficiency in agriculture: measurement, current situation and trends," Book Chapters,, International Water Management Institute.
    5. Araya, A. & Prasad, P.V.V. & Gowda, P.H. & Afewerk, A. & Abadi, B. & Foster, A.J., 2019. "Modeling irrigation and nitrogen management of wheat in northern Ethiopia," Agricultural Water Management, Elsevier, vol. 216(C), pages 264-272.
    6. Liu, Xiaogang & Li, Fusheng & Zhang, Yan & Yang, Qiliang, 2016. "Effects of deficit irrigation on yield and nutritional quality of Arabica coffee (Coffea arabica) under different N rates in dry and hot region of southwest China," Agricultural Water Management, Elsevier, vol. 172(C), pages 1-8.
    7. Ji, Xi-Bin & Kang, Er-Si & Chen, Ren-Sheng & Zhao, Wen-Zhi & Zhang, Zhi-Hui & Jin, Bo-Wen, 2007. "A mathematical model for simulating water balances in cropped sandy soil with conventional flood irrigation applied," Agricultural Water Management, Elsevier, vol. 87(3), pages 337-346, February.
    8. Bessembinder, J.J.E. & Leffelaar, P.A. & Dhindwal, A.S. & Ponsioen, T.C., 2005. "Which crop and which drop, and the scope for improvement of water productivity," Agricultural Water Management, Elsevier, vol. 73(2), pages 113-130, May.
    9. Singh, Ajay & Krause, Peter & Panda, Sudhindra N. & Flugel, Wolfgang-Albert, 2010. "Rising water table: A threat to sustainable agriculture in an irrigated semi-arid region of Haryana, India," Agricultural Water Management, Elsevier, vol. 97(10), pages 1443-1451, October.
    10. Zhou, Hong & Zhao, Wen zhi, 2019. "Modeling soil water balance and irrigation strategies in a flood-irrigated wheat-maize rotation system. A case in dry climate, China," Agricultural Water Management, Elsevier, vol. 221(C), pages 286-302.
    11. Mustafa, S.M.T. & Vanuytrecht, E. & Huysmans, M., 2017. "Combined deficit irrigation and soil fertility management on different soil textures to improve wheat yield in drought-prone Bangladesh," Agricultural Water Management, Elsevier, vol. 191(C), pages 124-137.
    12. Behera, S.K. & Panda, R.K., 2009. "Integrated management of irrigation water and fertilizers for wheat crop using field experiments and simulation modeling," Agricultural Water Management, Elsevier, vol. 96(11), pages 1532-1540, November.
    13. Sharma, Bharat & Molden, D. & Cook, Simon, 2015. "Water use efficiency in agriculture: measurement, current situation and trends," IWMI Books, Reports H046807, International Water Management Institute.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Wenlong & Li, Zizhen & Li, Weide, 2004. "Effect of the niche-fitness at different water supply and fertilization on yield of spring wheat in farmland of semi-arid areas," Agricultural Water Management, Elsevier, vol. 67(1), pages 1-13, June.
    2. Li, Wenlong & Li, Weide & Li, Zizhen, 2004. "Irrigation and fertilizer effects on water use and yield of spring wheat in semi-arid regions," Agricultural Water Management, Elsevier, vol. 67(1), pages 35-46, June.
    3. Li, Wenlong & Han, Xiaozhuo & Zhang, Yanyu & Li, Zizhen, 2007. "Effects of elevated CO2 concentration, irrigation and nitrogenous fertilizer application on the growth and yield of spring wheat in semi-arid areas," Agricultural Water Management, Elsevier, vol. 87(1), pages 106-114, January.
    4. Mourad Rezig & Hatem Cheikh M'hamed & Mbarek Ben Naceur, 2015. "Does Deficit Irrigation Affect the Relation between Radiation Interception and Water Consumption for Durum Wheat (Triticum durum Desf)?," Energy and Environment Research, Canadian Center of Science and Education, vol. 5(2), pages 1-36, December.
    5. Zwart, Sander J. & Bastiaanssen, Wim G. M., 2004. "Review of measured crop water productivity values for irrigated wheat, rice, cotton and maize," Agricultural Water Management, Elsevier, vol. 69(2), pages 115-133, September.
    6. Li, Feng-Min & Wang, Ping & Wang, Jun & Xu, Jin-Zhang, 2004. "Effects of irrigation before sowing and plastic film mulching on yield and water uptake of spring wheat in semiarid Loess Plateau of China," Agricultural Water Management, Elsevier, vol. 67(2), pages 77-88, June.
    7. Hatem Cheikh M’hamed & Mourad Rezig & Mbarek Ben Naceur, 2015. "Water Use Efficiency of Durum Wheat (Triticum durum Desf) under Deficit Irrigation," Journal of Agricultural Science, Canadian Center of Science and Education, vol. 7(8), pages 238-238, July.
    8. Yuhua Yang & Zizhen Li & Wenlong Li & Jianwei Zong, 2011. "Effect of Niche-fitness under Mulching and Fertilization on Yield of Lilium Davidii var. Unicolor in Semiarid Regions," Journal of Agricultural Science, Canadian Center of Science and Education, vol. 3(4), pages 1-30, November.
    9. Zhang, Yongqiang & Kendy, Eloise & Qiang, Yu & Changming, Liu & Yanjun, Shen & Hongyong, Sun, 2004. "Effect of soil water deficit on evapotranspiration, crop yield, and water use efficiency in the North China Plain," Agricultural Water Management, Elsevier, vol. 64(2), pages 107-122, January.
    10. Maroufpoor, Saman & Shiri, Jalal & Maroufpoor, Eisa, 2019. "Modeling the sprinkler water distribution uniformity by data-driven methods based on effective variables," Agricultural Water Management, Elsevier, vol. 215(C), pages 63-73.
    11. Katerji, N. & van Hoorn, J. W. & Hamdy, A. & Mastrorilli, M., 2004. "Comparison of corn yield response to plant water stress caused by salinity and by drought," Agricultural Water Management, Elsevier, vol. 65(2), pages 95-101, March.
    12. Zhao, Weixia & Li, Jiusheng & Li, Yanfeng & Yin, Jianfeng, 2012. "Effects of drip system uniformity on yield and quality of Chinese cabbage heads," Agricultural Water Management, Elsevier, vol. 110(C), pages 118-128.
    13. Lv, Zhaoyan & Diao, Ming & Li, Weihua & Cai, Jian & Zhou, Qin & Wang, Xiao & Dai, Tingbo & Cao, Weixing & Jiang, Dong, 2019. "Impacts of lateral spacing on the spatial variations in water use and grain yield of spring wheat plants within different rows in the drip irrigation system," Agricultural Water Management, Elsevier, vol. 212(C), pages 252-261.
    14. Kundu, M. & Sarkar, S., 2009. "Growth and evapotranspiration pattern of rajmash (Phaseolus vulgaris L.) under varying irrigation schedules and phosphate levels in a hot sub-humid climate," Agricultural Water Management, Elsevier, vol. 96(8), pages 1268-1274, August.
    15. Yang, Gaiqiang & Guo, Ping & Huo, Lijuan & Ren, Chongfeng, 2015. "Optimization of the irrigation water resources for Shijin irrigation district in north China," Agricultural Water Management, Elsevier, vol. 158(C), pages 82-98.
    16. Walaa El-Nashar & Ahmed Elyamany, 2023. "Adapting Irrigation Strategies to Mitigate Climate Change Impacts: A Value Engineering Approach," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(6), pages 2369-2386, May.
    17. Li, Jiusheng & Rao, Minjie, 2003. "Field evaluation of crop yield as affected by nonuniformity of sprinkler-applied water and fertilizers," Agricultural Water Management, Elsevier, vol. 59(1), pages 1-13, March.
    18. Iqbal, M. Anjum & Shen, Yanjun & Stricevic, Ruzica & Pei, Hongwei & Sun, Hongyoung & Amiri, Ebrahim & Penas, Angel & del Rio, Sara, 2014. "Evaluation of the FAO AquaCrop model for winter wheat on the North China Plain under deficit irrigation from field experiment to regional yield simulation," Agricultural Water Management, Elsevier, vol. 135(C), pages 61-72.
    19. Castellanos, M.T. & Cartagena, M.C. & Requejo, M.I. & Arce, A. & Cabello, M.J. & Ribas, F. & Tarquis, A.M., 2016. "Agronomic concepts in water footprint assessment: A case of study in a fertirrigated melon crop under semiarid conditions," Agricultural Water Management, Elsevier, vol. 170(C), pages 81-90.
    20. Sanchez, I. & Zapata, N. & Faci, J.M., 2010. "Combined effect of technical, meteorological and agronomical factors on solid-set sprinkler irrigation: I. Irrigation performance and soil water recharge in alfalfa and maize," Agricultural Water Management, Elsevier, vol. 97(10), pages 1571-1581, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:65:y:2004:i:2:p:133-143. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.