IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v45y2000i2p185-202.html
   My bibliography  Save this article

Using the IRMOS model for diagnostic analysis and performance enhancement of the Rio Cobre Irrigation Scheme, Jamaica

Author

Listed:
  • Hales, A. L.
  • Burton, M. A.

Abstract

No abstract is available for this item.

Suggested Citation

  • Hales, A. L. & Burton, M. A., 2000. "Using the IRMOS model for diagnostic analysis and performance enhancement of the Rio Cobre Irrigation Scheme, Jamaica," Agricultural Water Management, Elsevier, vol. 45(2), pages 185-202, July.
  • Handle: RePEc:eee:agiwat:v:45:y:2000:i:2:p:185-202
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378-3774(99)00076-1
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Rao, N. H. & Sarma, P. B. S. & Chander, Subhash, 1988. "Irrigation scheduling under a limited water supply," Agricultural Water Management, Elsevier, vol. 15(2), pages 165-175, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lozano, David & Mateos, Luciano, 2008. "Usefulness and limitations of decision support systems for improving irrigation scheme management," Agricultural Water Management, Elsevier, vol. 95(4), pages 409-418, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. T. Fowe & I. Nouiri & B. Ibrahim & H. Karambiri & J. Paturel, 2015. "OPTIWAM: An Intelligent Tool for Optimizing Irrigation Water Management in Coupled Reservoir–Groundwater Systems," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(10), pages 3841-3861, August.
    2. Shangguan, Zhouping & Shao, Mingan & Horton, Robert & Lei, Tingwu & Qin, Lin & Ma, Jianqing, 2002. "A model for regional optimal allocation of irrigation water resources under deficit irrigation and its applications," Agricultural Water Management, Elsevier, vol. 52(2), pages 139-154, January.
    3. Singels, A. & Paraskevopoulos, A.L. & Mashabela, M.L., 2019. "Farm level decision support for sugarcane irrigation management during drought," Agricultural Water Management, Elsevier, vol. 222(C), pages 274-285.
    4. Shang, Songhao & Mao, Xiaomin, 2006. "Application of a simulation based optimization model for winter wheat irrigation scheduling in North China," Agricultural Water Management, Elsevier, vol. 85(3), pages 314-322, October.
    5. Shu Chen & Dongguo Shao & Xudong Li & Caixiu Lei, 2016. "Simulation-Optimization Modeling of Conjunctive Operation of Reservoirs and Ponds for Irrigation of Multiple Crops Using an Improved Artificial Bee Colony Algorithm," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(9), pages 2887-2905, July.
    6. Chen, Shu & Shao, Dongguo & Gu, Wenquan & Xu, Baoli & Li, Haoxin & Fang, Longzhang, 2017. "An interval multistage water allocation model for crop different growth stages under inputs uncertainty," Agricultural Water Management, Elsevier, vol. 186(C), pages 86-97.
    7. Ajay Singh, 2014. "Irrigation Planning and Management Through Optimization Modelling," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(1), pages 1-14, January.
    8. Shi, Jianchu & Wu, Xun & Zhang, Mo & Wang, Xiaoyu & Zuo, Qiang & Wu, Xiaoguang & Zhang, Hongfei & Ben-Gal, Alon, 2021. "Numerically scheduling plant water deficit index-based smart irrigation to optimize crop yield and water use efficiency," Agricultural Water Management, Elsevier, vol. 248(C).
    9. Arredondo-Ramírez, Karla & Rubio-Castro, Eusiel & Nápoles-Rivera, Fabricio & Ponce-Ortega, José María & Serna-González, Medardo & El-Halwagi, Mahmoud M., 2015. "Optimal design of agricultural water systems with multiperiod collection, storage, and distribution," Agricultural Water Management, Elsevier, vol. 152(C), pages 161-172.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:45:y:2000:i:2:p:185-202. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.