Author
Listed:
- Lv, Aifeng
- Yang, Xianglei
- Zhang, Wenxiang
- Han, Yan
Abstract
Frequent drought events have a profound impact on the natural environment and socio-economics. Therefore, accurate drought monitoring is essential to prevent and minimize drought losses. In this study, we developed an improved soil moisture dataset (Merged-SM) by using Triple Collocation (TC) and Linear Weight Fusion (LWF) methods to fuse soil moisture data from ERA5-Land, ESA CCI, and MERRA-2. The dataset was validated against in-situ data and applied to investigate the spatiotemporal dynamics of agricultural droughts across China. Results show that (1) Merged-SM exhibits superior accuracy and spatial coverage in comparison to individual datasets, achieving a higher correlation with in-situ data (R = 0.573) and a reduced unbiased root mean square error (ubRMSE = 0.027–0.047). (2) The Merged-SM accurately identified the onset, duration, and spatial extent of agricultural drought events, showing a significant negative correlation with agricultural disaster area (R = −0.418, P = 0.006). (3) Temporally, agricultural droughts across most regions of China displayed stable or alleviating trends, with particularly notable relief observed in Region VI. Spatially, 58.25 % of China's territory experienced a decrease in drought intensity, especially in the Qinghai-Tibetan Plateau, North China Plain, and southern regions, while certain areas in northern and southwestern China recorded an intensification of drought conditions. (4) The correlation between meteorological drought and agricultural drought was found to be stronger during the summer (R = 0.68) and autumn (R = 0.63) compared to winter and spring. The propagation time from meteorological drought to agricultural drought varied seasonally, being shortest in summer (2.54 months) and longest in winter (6.54 months). These findings highlight the potential of the Merged-SM dataset for improving agricultural drought monitoring and provide critical insights into the spatiotemporal dynamics and propagation mechanisms of droughts in China.
Suggested Citation
Lv, Aifeng & Yang, Xianglei & Zhang, Wenxiang & Han, Yan, 2025.
"Integrated soil moisture fusion for enhanced agricultural drought monitoring in China,"
Agricultural Water Management, Elsevier, vol. 311(C).
Handle:
RePEc:eee:agiwat:v:311:y:2025:i:c:s0378377425001155
DOI: 10.1016/j.agwat.2025.109401
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:311:y:2025:i:c:s0378377425001155. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.