Author
Listed:
- Zhao, Xiaole
- Wang, Qi
- Qadeer, Abdul
- Sun, Yuanwei
- Azim, Rizwan
- Awuku, Ibrahim
- Masoumkhani, Farzaneh
- Ma, Wen
- Liu, Qinglin
- Cui, Xunzhen
- Dong, Haixia
- Li, Xuchun
- Liu, Bing
Abstract
Water scarcity poses a significant challenge for alfalfa (Medicago sativa L) cultivation in semi-arid regions in China. The conventional use of ridge-furrow rainwater harvesting (RFRH) with plastic film mulching in these areas has led to notable environmental repercussions. This study proposed an innovative approach in which RFRH was integrated with chopped straw-soil crust instead of plastic film. Runoff observations and alfalfa production experiments were carried out using a split-plot design to investigate the impact of varying chopped straw lengths (2 cm and 10 cm) and application rates (0 (R0), 3 (R3), 6 (R6), and 9 (R9) t ha−1) on runoff coefficient, soil water storage, temperature, fodder yield, and crop water productivity (WPC). Results indicated that the average runoff coefficient for R0, R3, R6, and R9 was 0.36–0.49, 0.41–0.59, 0.50–0.68, and 0.64–0.74, respectively. Compared to R0, the increase in soil water storage for R3, R6, and R9 was 7.1–15.1, 15.0–26.5, and 20.1–44.2 mm, respectively. The reduction in temperature within the furrow profile for those treatments was 0.4–1.0°C, 0.8–1.3°C, and 1.1–2.0°C, respectively. The increase in fodder yield for those treatments ranged from 11.3 % to 34.0 %, 31.2 %-62.9 %, and 7.9 %-47.7 %, respectively, while the enhancement in WPC was 1.3–14.8, 5.1–27.9, and 2.0–20.7 kg ha−1 mm−1. Notably, the average values for runoff coefficient, soil water storage, fodder yield, and WPC under 10 cm length of chopped straw were 1.03–1.31, 1.02–1.03, 1.02–1.05, and 1.03–1.08 times greater than under 2 cm length of chopped straw. Runoff coefficient, soil water storage, fodder yield, and WPC increased as chopped straw application rate and length increased. The structural equation modelling analysis showed that the chopped straw application rate had a significant direct positive effect on fodder yield and WPC, whereas the chopped straw length had a significant indirect negative effect on those parameters. The regression equation indicated that the optimized chopped straw application rate ranged from 5.2 to 7.1 t ha−1, while the optimized chopped straw length was 10 cm. This study underscored that chopped straw-soil crust was a sustainable alternative to plastic film mulching, offering valuable insights for improving alfalfa cultivation in water-scarce environments.
Suggested Citation
Zhao, Xiaole & Wang, Qi & Qadeer, Abdul & Sun, Yuanwei & Azim, Rizwan & Awuku, Ibrahim & Masoumkhani, Farzaneh & Ma, Wen & Liu, Qinglin & Cui, Xunzhen & Dong, Haixia & Li, Xuchun & Liu, Bing, 2025.
"Optimized length and application rate of chopped straw for alfalfa production in ridge-furrow rainwater-harvesting in semi-arid regions in China,"
Agricultural Water Management, Elsevier, vol. 311(C).
Handle:
RePEc:eee:agiwat:v:311:y:2025:i:c:s0378377425001076
DOI: 10.1016/j.agwat.2025.109393
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:311:y:2025:i:c:s0378377425001076. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.