Author
Listed:
- Peña-Arancibia, Jorge L.
- Ahmad, Mobin-ud Din
- Yu, Yingying
Abstract
Remote sensing (RS) plays a crucial role in water resources management. Irrigated areas have undergone substantial changes globally. This research utilises RS to characterise irrigation from 2010 to 2020 within five canal commands in the Indus Basin Irrigated System (IBIS), the world's largest contiguous irrigation system (∼16 million hectares). Cropping systems, water use and supply assessments are conducted primarily through estimations of 30 m actual evapotranspiration (ETa) and seasonal land cover classification maps – for both the wet summer 'Kharif' and dry winter 'Rabi' seasons. ETa estimates are required to match the 10-day period in which supply is adjusted to balance shortages in the canal commands. The multiannual 10-day frequency is achieved through blending of 'low spatial resolution-high temporal frequency' MODIS images (500 m and daily) and 'high spatial resolution-low temporal frequency' Landsat images (30 m and every 16 days). ETa estimates show reasonable spatiotemporal agreement (R2>0.7) when compared against locally calibrated ETa estimates. Seasonal crop maps generated with a Random Forest classification show reasonable accuracy (R2>0.9) when compared against agricultural survey statistics. The crop maps and associated ETa provide valuable insights into cropping and water use dynamics. While Kharif ETa and total cropped area exhibit relatively low year-to-year variability, large shifts from cotton (49% decrease) to rice (125% increase), other crops, and aquaculture are observed in some areas. During Rabi, ETa and total cropped area variations are less pronounced compared to Kharif, with winter cereals dominating the landscape. ETa generally exceeds water supply in the canal commands, with the disparity being higher during Rabi (36% on average), indicating groundwater augmentation as a significant contributor to groundwater depletion. The integration of ETa crop maps and canal water deliveries offers novel and essential knowledge for agriculture and water management policymaking in the IBIS and similar regions, from field to canal command scales.
Suggested Citation
Peña-Arancibia, Jorge L. & Ahmad, Mobin-ud Din & Yu, Yingying, 2025.
"Remote sensing characterisation of cropping systems and their water use to assess irrigation management from field to canal command scale,"
Agricultural Water Management, Elsevier, vol. 311(C).
Handle:
RePEc:eee:agiwat:v:311:y:2025:i:c:s0378377425000885
DOI: 10.1016/j.agwat.2025.109374
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:311:y:2025:i:c:s0378377425000885. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.