IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v310y2025ics0378377425000812.html
   My bibliography  Save this article

Time-frequency insights: Uncovering the drivers of reference evapotranspiration across China

Author

Listed:
  • Zhao, Shuting
  • Wu, Jinglong
  • Qiu, Rangjian
  • Zhang, Tao
  • Luo, Yufeng
  • Hu, Wei

Abstract

Reference evapotranspiration (ETo) is an important variable required in many disciplines and is influenced by many factors. However, the bivariate and multivariate relationships between ETo and affecting factors across multiple time-frequency domains remain unknown. Here, we identified the primary factors affecting ETo across time-frequency domain in 653 meteorological stations of mainland China based on the combination of wavelet transform coherence (WTC) and multiwavelet coherence (MWC) methods. The results indicated that ETo and all affecting factors (solar radiation, Rs; vapor pressure deficit, VPD; air temperature, Ta; wind speed, u2) during 1967–2016 exhibited a frequency ranging from 2 days to 211 months, and had a continuous annual (374 d) periodicity (except u2) for almost all sites. Results of percentage area of significant coherence (PASC) of WTC indicated that VPD or Rs is the dominant single factor driving variations of ETo across time-frequency space in majority sites (66.3 % and 32.0 %, respectively), while u2 is only dominant in limited (11) sites. This quite differs from the daily scale, where daily ETo was primarily influenced by daily Rs at 361 sites, daily VPD at 286 sites, and daily Ta at 6 sites. Results of MWC showed that the explanation for the time-frequency variations of ETo can be further improved using two-factors in 40.7 % of all sites as indicated by absolute increased PASC of MWC by 5 %. Overall, we found that the variation of ETo across time-frequency domain can be well explained by using only one variable (VPD or Rs) in 59.3 % of all sites, while by combinations of VPD-Rs and VPD-u2 in remaining sites. This study provides novel insights into understanding the variations of ETo across multiple time-frequency spaces.

Suggested Citation

  • Zhao, Shuting & Wu, Jinglong & Qiu, Rangjian & Zhang, Tao & Luo, Yufeng & Hu, Wei, 2025. "Time-frequency insights: Uncovering the drivers of reference evapotranspiration across China," Agricultural Water Management, Elsevier, vol. 310(C).
  • Handle: RePEc:eee:agiwat:v:310:y:2025:i:c:s0378377425000812
    DOI: 10.1016/j.agwat.2025.109367
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377425000812
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2025.109367?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:310:y:2025:i:c:s0378377425000812. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.