IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v309y2025ics0378377425000629.html
   My bibliography  Save this article

Balancing water saving, market attractiveness, and pollution control in crop spatial planting structure planning of arid regions

Author

Listed:
  • Hao, Longbin
  • Zhang, Shouhong
  • Zhang, Fan
  • Ren, Yufei
  • Zhang, Xinyu
  • Yan, Jing

Abstract

In arid regions, agricultural production and ecological health heavily depend on limited water resources, necessitating the implementation of additional water-saving measures to promote sustainable development. Crop spatial planting structure optimization, as an effective water-saving measure, has been widely utilized to enhance water-use efficiency by aligning the supply and demand of different crops. Besides water-saving benefits, crop planting also offers advantages in terms of market proximity and pollution control. Therefore, this study endeavors to integrate the Von Thunen's agricultural location theory, an agricultural non-point source pollution model, and 0–1 integer multi-objective programming into a unified framework to optimize crop spatial planting structure in arid regions. This approach is applied to a case study in the middle reaches of the Heihe River in northwest China. Results indicate that: (1) The grid-based 0–1 integer multi-objective approach can effectively make tradeoff among market attractiveness, pollution control, and crop suitability for crop planting structure planning in arid regions. (2) Optimal crop planting structure can increase agricultural planting profits by 4.679 billion CNY, while reduces system agricultural non-point source pollution and total water allocation by 34.72 % and 10.19 %, respectively. (3) The multi-objective approach shows better performance than single-objective models by comparing the Synthetic Degree (SD), Sustainability Index (SI), and Approximation Degree (AD). The advantages and successful application of proposed approach indicate that it is universality and effectiveness in addressing agricultural resource management issues in arid regions.

Suggested Citation

  • Hao, Longbin & Zhang, Shouhong & Zhang, Fan & Ren, Yufei & Zhang, Xinyu & Yan, Jing, 2025. "Balancing water saving, market attractiveness, and pollution control in crop spatial planting structure planning of arid regions," Agricultural Water Management, Elsevier, vol. 309(C).
  • Handle: RePEc:eee:agiwat:v:309:y:2025:i:c:s0378377425000629
    DOI: 10.1016/j.agwat.2025.109348
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377425000629
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2025.109348?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:309:y:2025:i:c:s0378377425000629. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.