IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v308y2025ics0378377425000174.html
   My bibliography  Save this article

A novel agricultural drought index based on multi-source remote sensing data and interpretable machine learning

Author

Listed:
  • Chen, Hao
  • Yang, Ni
  • Song, Xuanhua
  • Lu, Chunhua
  • Lu, Menglan
  • Chen, Tan
  • Deng, Shulin

Abstract

Drought is a frequent, destructive, and complex natural hazard, and seriously threatens eco-environment, socio-economy, and the health of human. Previous studies suggested that integrated multi-source remote sensing drought indices have the potential to comprehensively monitor drought conditions, however most existing integrated drought indices still have several limitations. Here, we used solar-induced chlorophyll fluorescence, water balance, soil moisture, and land surface temperature to develop a new integrated remote sensing drought index, namely interpretable machine learning drought index (IMLDI), based on the Bayesian optimized tree-based Light Gradient Boosting Machine and SHapley Additive exPlainations. The different land cover types were further considered, and the categories of drought severity were objectively determined by the iterative optimized method. The drought monitoring performance of IMLDI was validated in the eastern parts of China, and three integrated drought indies composited by PCA, multiple linear regression, and gradient boosting method were also included for comparison. The results show that IMLDI has a higher spatial and temporal consistency with standardized precipitation evapotranspiration index, can better reflect the real-world observed drought-affected cropland areas and gross primary production, and can also well describe the evolutions of 2009/2010 and 2019 drought events in the eastern parts of China, indicating higher drought monitoring performance of IMLDI. Besides, IMLDI-based agricultural drought risk analysis shows that the Huang-Hai Region and Yunnan, Guizhou, and Guangxi Provinces have a high risk to suffer from severe agricultural droughts. Overall, IMLDI has a great potential to use as a new integrated remote sensing drought index for agricultural drought monitoring.

Suggested Citation

  • Chen, Hao & Yang, Ni & Song, Xuanhua & Lu, Chunhua & Lu, Menglan & Chen, Tan & Deng, Shulin, 2025. "A novel agricultural drought index based on multi-source remote sensing data and interpretable machine learning," Agricultural Water Management, Elsevier, vol. 308(C).
  • Handle: RePEc:eee:agiwat:v:308:y:2025:i:c:s0378377425000174
    DOI: 10.1016/j.agwat.2025.109303
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377425000174
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2025.109303?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:308:y:2025:i:c:s0378377425000174. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.