Author
Listed:
- Huang, Ya-Zhen
- Lee, You-Yi
- Fan, Chihhao
Abstract
Non-point source pollution resulting from agricultural fertilization may enter neighboring water bodies, negatively impacting the environmental water quality. Therefore, this study aims to evaluate the efficiency of innovative fertilization strategies for agricultural non-point source pollution control and explore their benefit for carbon negativity. The results show that organic fertilizers are more likely to be washed out by rainfall or irrigation due to their higher soluble component content. The treatments using bamboo biochar, microbial agents, or both significantly reduced the nitrogen concentrations in infiltration and surface runoff. The washed-away phosphate demonstrated a different trend because adding microbial agents, including phosphorus-solubilizing bacteria, converted fixed inorganic phosphorus in the soil into water-soluble phosphorus. In addition, the scouring and leaching in rainfall events mainly cause the farmland's nutrient loss after fertilizer application. The nutrient uptake by crops was increased by 15–30 %, and nutrient mass in infiltration and runoff waters was reduced by 5–10 %. By combining fertilizer reduction and innovative fertilization strategies, the crop yield remained similar to that with a full amount of fertilizer application. Over-dose application in fertilizer may not necessarily promote crop growth but may cause crop damage and fertilizer loss. The carbon negativity benefit of using innovative fertilization strategies was explored, and adding both microbial agents and bamboo biochar in half organic fertilization demonstrated the highest reduction (80.75 %) in carbon emission through synergistic interactions in the soil matrix. The innovative fertilization strategies employed in this study can (1) effectively reduce non-point source pollution from agricultural activities without impairing crops' overall growth and yield and (2) induce the synergistic effects in reducing nutrient loss, enhancing soil carbon sequestration, and mitigating greenhouse gas emissions.
Suggested Citation
Huang, Ya-Zhen & Lee, You-Yi & Fan, Chihhao, 2025.
"Innovative fertilization strategies for in-situ pollution control and carbon negativity enhancement in agriculture,"
Agricultural Water Management, Elsevier, vol. 307(C).
Handle:
RePEc:eee:agiwat:v:307:y:2025:i:c:s0378377424006061
DOI: 10.1016/j.agwat.2024.109270
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:307:y:2025:i:c:s0378377424006061. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.