IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v307y2025ics0378377424006024.html
   My bibliography  Save this article

An interval bilateral regulation framework of water resources supply and demand in irrigation area under water sources uncertainty

Author

Listed:
  • Shu, Zhan
  • Kang, Yan
  • Gao, Ying
  • Shi, Xuemai
  • Li, Wanxue
  • Zhang, Shuo
  • Song, Songbai
  • Li, Lingjie

Abstract

Climate change and human activities have diminished the stability of the water resources system, leading to multiple uncertainties in the prediction of incoming water, reservoir operation optimization on the water supply side, and adaptive adjustments of the water-use structure on the water demand side. In response to quantify uncertainty and match the water supply-demand in water resources regulation, we developed a novel "ensemble inflow prediction—reserve operation strategy—interval bilateral regulation—water supply risk analysis" framework by coupling the interval prediction methods of incoming water, the bilayer model of reservoir multi-objective optimal operation, and the optimization model of planting structure in irrigation area. In the proposed framework, the NGBoost and Bootstrap methods were employed to assess the uncertainty of runoff and groundwater based on the varying sample sizes. A bilayer model of reservoir multi-objective operation was proposed under uncertain runoff to optimize reservoir operation rules for different sequences of reservoir water storage and supply. An interval bilateral regulation model of water supply and demand was developed to optimize crop planting structures for adapting to uncertain water supply scenarios. We applied this framework to the Baojixia Irrigation Area (BIA) of Northwest China. The results show that the NGboost model achieves satisfactory prediction results for the monthly runoff. The reservoir group, following the sequence of water storage [II, III, IV, V, VI] and the sequence of water supply [VI, V, IV, III, II], can reduce water supply risks under uncertain runoff. Compared to the current scenario, annual average economic benefit has been increased by 19.6 %-24.9 %, irrigation water has been reduced by 10.3 %-12.5 %, and water shortage rates have been reduced to 2.1 %-2.9 % under water supply scenarios A-W, A-N, A-D, and A-E in the interval bilateral regulation framework. This study provides a new perspective to address the interaction of water supply-demand and multiple uncertainties.

Suggested Citation

  • Shu, Zhan & Kang, Yan & Gao, Ying & Shi, Xuemai & Li, Wanxue & Zhang, Shuo & Song, Songbai & Li, Lingjie, 2025. "An interval bilateral regulation framework of water resources supply and demand in irrigation area under water sources uncertainty," Agricultural Water Management, Elsevier, vol. 307(C).
  • Handle: RePEc:eee:agiwat:v:307:y:2025:i:c:s0378377424006024
    DOI: 10.1016/j.agwat.2024.109266
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377424006024
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2024.109266?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:307:y:2025:i:c:s0378377424006024. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.