IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v307y2025ics0378377424005985.html
   My bibliography  Save this article

Double disaggregation of the decline of terrestrial water storage for a highly cultivated dryland partially covered by glaciers

Author

Listed:
  • Wang, Zongxia
  • Liu, Suxia

Abstract

Dramatic declines of terrestrial water storage (TWS) have been found in global drylands, the home to more than a third of the world’s population. TWS variations can be internally disaggregated into changes in hydrological components or externally disaggregated into impacts of climate change and human activities. This study proposed an innovative double disaggregation framework to improve the explanations of TWS depletion in a highly cultivated dryland partially covered by glaciers, i.e., the northern slope of the Tianshan Mountains (NSTM). A widespread and significant decline of TWS was detected in NSTM. Besides the Tianshan Mountains, TWS also declined significantly downstream where it should have increased given the substantive glacier meltwater supply from upstream, implying that the evolution of TWS in NSTM has probably deviated from natural manners. Pixel-wise internal disaggregation indicated that groundwater storage was the predominant hydrological component leading to TWS depletion in most of the NSTM except for glacier-covered areas. Additionally, basin-averaged external disaggregation revealed a more dramatic TWS depletion rate induced solely by human activities compared to GRACE observations, suggesting that human activities have dominated TWS decline. To be specific, substantial withdrawal of groundwater for irrigation enhanced regional evapotranspiration, which subsequently accelerated the dissipation of TWS, and therefore counteracted and even reversed the potential increase in TWS downstream. The double disaggregation framework facilitated the holistic explanations of TWS decline in NSTM, and was expected to serve as a useful tool for attributing TWS variations in other drylands worldwide.

Suggested Citation

  • Wang, Zongxia & Liu, Suxia, 2025. "Double disaggregation of the decline of terrestrial water storage for a highly cultivated dryland partially covered by glaciers," Agricultural Water Management, Elsevier, vol. 307(C).
  • Handle: RePEc:eee:agiwat:v:307:y:2025:i:c:s0378377424005985
    DOI: 10.1016/j.agwat.2024.109262
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377424005985
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2024.109262?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:307:y:2025:i:c:s0378377424005985. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.