IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v307y2025ics0378377424005729.html
   My bibliography  Save this article

Saline water concentration determines the reduction pathway for oat phosphorus absorption

Author

Listed:
  • Liu, Tong
  • Xia, Lihua
  • Dong, Xinliang
  • Wang, Jintao
  • Liu, Xiaojing
  • Sun, Hongyong
  • Fang, Yunying

Abstract

Saline water irrigation offers a potential solution for sustaining crop yields under freshwater scarcity. However, it carries risks such as soil structure deterioration and soil organic matter decomposition, which could accelerate nutrient release. Elevated soil salinity further hampers crop growth and reduces nutrient uptake, particularly affecting phosphorus absorption. This study investigated the dynamics of soil pH, electrical conductivity, water content and available phosphorus throughout the entire growth period of oat treated with 1, 3, and 5 g L−1 saline water. It also examined the post-harvest responses of soil aggregates and their associated phosphorus, as well as the above-ground biomass and phosphorus content in various oat organs. The results showed that 1) Compared to the 1 g L−1, 3 and 5 g L−1 treatments significantly increased soil electrical conductivity and water content throughout most of the growth period, with the 5 g L−1 treatment also significantly increasing soil available phosphorus content; 2) The 3 and 5 g L−1 treatments significantly reduced the soil macro-aggregate (>1 mm) proportion by 24.76 % and 36.36 % (p < 0.05), while increasing soil micro-aggregate (<0.053 mm) by 39.41 % and 71.59 % (p < 0.05), along with higher available phosphorus content in the < 0.053 mm fraction; 3) The above-ground phosphorus content in oats decreased by 30.27 % and 35.39 % under the 3 and 5 g L−1 treatments, respectively, compared to the 1 g L−1 treatment. Partial least squares structural equation modeling revealed the different reduction pathways: 3 g L−1 saline water inhibited crop phosphorus absorption by reducing phosphorus concentrations in stem and shell (Path coefficient [PC] = 0.796, p < 0.001), whereas 5 g L−1 reduced it by decreasing the stem and seed biomass (Path coefficient [PC] = 0.816, p < 0.001). This study reveals the effects of saline water irrigation on soil and crop phosphorus availability, providing valuable insights for optimizing saline water use and enhancing phosphorus availability in agricultural systems.

Suggested Citation

  • Liu, Tong & Xia, Lihua & Dong, Xinliang & Wang, Jintao & Liu, Xiaojing & Sun, Hongyong & Fang, Yunying, 2025. "Saline water concentration determines the reduction pathway for oat phosphorus absorption," Agricultural Water Management, Elsevier, vol. 307(C).
  • Handle: RePEc:eee:agiwat:v:307:y:2025:i:c:s0378377424005729
    DOI: 10.1016/j.agwat.2024.109236
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377424005729
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2024.109236?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:307:y:2025:i:c:s0378377424005729. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.