IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v307y2025ics0378377424005493.html
   My bibliography  Save this article

Depth-specific soil moisture estimation in vegetated corn fields using a canopy-informed model: A fusion of RGB-thermal drone data and machine learning

Author

Listed:
  • Vahidi, Milad
  • Shafian, Sanaz
  • Frame, William Hunter

Abstract

Accurate soil moisture estimation is fundamental for optimizing irrigation strategies, enhancing crop yields, and managing water resources efficiently. This study harnesses time-series RGB-thermal imagery to assess soil moisture throughout various growth stages of corn, emphasizing depth-specific soil moisture estimation and time-series analysis of canopy information such as canopy structure and canopy spectral across growth stages. By integrating a comprehensive dataset that covers the full spectrum of the growing season from early to late stages. we evaluated soil moisture at multiple depths including 10, 20, 30, and 40 cm. Sophisticated regression models such as Gradient Boosting Machines (GBM), Least Absolute Shrinkage and Selection Operator (Lasso), and Support Vector Machines (SVM) were employed to analyze the effects of spectral indices, land surface temperature (LST), and structural canopy variables on soil moisture estimation accuracy. Our results reveal that thermal variables, particularly LST, exhibit significant correlations with soil moisture at shallower depths, especially in non-irrigated plots where moisture variability tends to be greater. The GBM model performed exceptionally well, achieving a coefficient of determination (R²) of 0.79 and a root mean square error (RMSE) of 1.86 % at a depth of 10 cm, showcasing its precision in moisture prediction. At a depth of 30 cm, the GBM model still demonstrated robust performance with an R² of 0.69 and an RMSE of 3.38 %, adapting effectively to different canopy densities and soil conditions. As canopy density increased, the effectiveness of LST in predicting soil moisture decreased, underscoring the dynamic interaction between plant growth stages and moisture estimation accuracy.

Suggested Citation

  • Vahidi, Milad & Shafian, Sanaz & Frame, William Hunter, 2025. "Depth-specific soil moisture estimation in vegetated corn fields using a canopy-informed model: A fusion of RGB-thermal drone data and machine learning," Agricultural Water Management, Elsevier, vol. 307(C).
  • Handle: RePEc:eee:agiwat:v:307:y:2025:i:c:s0378377424005493
    DOI: 10.1016/j.agwat.2024.109213
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377424005493
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2024.109213?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:307:y:2025:i:c:s0378377424005493. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.