IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v307y2025ics0378377424005304.html
   My bibliography  Save this article

Enhancing cotton irrigation with distributional actor–critic reinforcement learning

Author

Listed:
  • Chen, Yi
  • Lin, Meiwei
  • Yu, Zhuo
  • Sun, Weihong
  • Fu, Weiguo
  • He, Liang

Abstract

Accurate predictions of irrigation’s impact on crop yield are crucial for effective decision-making. However, current research predominantly focuses on the relationship between irrigation events and soil moisture, often neglecting the physiological state of the crops themselves. This study introduces a novel intelligent irrigation approach based on distributional reinforcement learning, ensuring that the algorithm simultaneously considers weather, soil, and crop conditions to make optimal irrigation decisions for long-term benefits. To achieve this, we collected climate data from 1980 to 2024 and conducted a two-year cotton planting experiment in 2023 and 2024. We used soil and plant state indicators from 5 experimental groups with varying irrigation treatments to calibrate and validate the DSSAT model. Subsequently, we innovatively integrated a distributional reinforcement learning method—an effective machine learning technique for continuous control problems. Our algorithm focuses on 17 indicators, including crop leaf area, stem leaf count, and soil evapotranspiration, among others. Through a well-designed network structure and cumulative rewards, our approach effectively captures the relationships between irrigation events and these states. Additionally, we validated the robustness and generalizability of the model using three years of extreme weather data and two consecutive years of cross-site observations. This method surpasses previous irrigation strategies managed by standard reinforcement learning techniques (e.g., DQN). Empirical results indicate that our approach significantly outperforms traditional agronomic decision-making, enhancing cotton yield by 13.6% and improving water use efficiency per kilogram of crop by 6.7%. In 2024, our method was validated in actual field experiments, achieving the highest yield among all approaches, with a 12.9% increase compared to traditional practices. Our research provides a robust framework for intelligent cotton irrigation in the region and offers promising new directions for implementing smart agricultural decision systems across diverse areas.

Suggested Citation

  • Chen, Yi & Lin, Meiwei & Yu, Zhuo & Sun, Weihong & Fu, Weiguo & He, Liang, 2025. "Enhancing cotton irrigation with distributional actor–critic reinforcement learning," Agricultural Water Management, Elsevier, vol. 307(C).
  • Handle: RePEc:eee:agiwat:v:307:y:2025:i:c:s0378377424005304
    DOI: 10.1016/j.agwat.2024.109194
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377424005304
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2024.109194?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:307:y:2025:i:c:s0378377424005304. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.