IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v301y2024ics0378377424002658.html
   My bibliography  Save this article

Optimizing water and nitrogen management for saline wasteland improvement: A case study on Suaeda salsa

Author

Listed:
  • Xu, Qiang
  • Liu, Hongguang
  • Li, Mingsi
  • Gong, Ping
  • Li, Pengfei
  • Xu, Yibin

Abstract

Cultivating Suaeda salsa (S. salsa) is a promising strategy for the improvement and development of saline wastelands. However, the absence of a scientifically reasonable water and fertilizer management system has long hindered the large-scale improvement and utilization of saline wastelands. Therefore, we performed field experiments for two consecutive years to investigate the effects of water-nitrogen coupling on biomass, forage quality, salt absorption capacity, soil improvement effect, and economic benefits of S. salsa. The optimal water and nitrogen dosages for multi-objective optimization were determined using multiple regression and spatial analysis methods. Three irrigation levels were established for the experiment based on 0.35 (W1), 0.50 (W2), and 0.65 (W3) of the local ETo (Where ETo denotes the reference evapotranspiration calculated based on the FAO-56 recommended by the Food and Agriculture Organization). The three nitrogen application levels were 150 (F1), 250 (F2), and 350 (F3) kg ha−1 in the complete combination design. At the same nitrogen application level, the biomass and economic benefits of the W3 irrigation level were the highest. However, the forage quality, salt absorption capacity, salt reduction, and water productivity at the W3 irrigation level were lower than those at the W2 irrigation level, and the water productivity at the W1 irrigation level was the highest. At the same irrigation level, when the nitrogen application level was F2, the biomass, forage quality, salt absorption, salt reduction, and net profit, all reached their maximum values, and water productivity was the highest at the F3 level. The optimal amount of water and nitrogen applied for each parameter was different, so it was impossible to obtain the highest biomass, forage quality, salt absorption, salt reduction, water productivity, and net profit at the same time. Therefore, multi-objective optimization was needed, the optimal irrigation volume range was 3350.11–3485.97 m3 ha−1, and the nitrogen application rate range was 273.49–326.66 kg ha−1. These findings provide a scientific basis for the large-scale cultivation of S. salsa in extreme arid region, which is helpful for the improvement and utilization of saline-alkali land.

Suggested Citation

  • Xu, Qiang & Liu, Hongguang & Li, Mingsi & Gong, Ping & Li, Pengfei & Xu, Yibin, 2024. "Optimizing water and nitrogen management for saline wasteland improvement: A case study on Suaeda salsa," Agricultural Water Management, Elsevier, vol. 301(C).
  • Handle: RePEc:eee:agiwat:v:301:y:2024:i:c:s0378377424002658
    DOI: 10.1016/j.agwat.2024.108930
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377424002658
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2024.108930?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Li, Xinxin & Liu, Hongguang & Li, Jing & He, Xinlin & Gong, Ping & Lin, En & Li, Kaiming & Li, Ling & Binley, Andrew, 2020. "Experimental study and multi–objective optimization for drip irrigation of grapes in arid areas of northwest China," Agricultural Water Management, Elsevier, vol. 232(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ruifeng Sun & Juanjuan Ma & Xihuan Sun & Lijian Zheng & Jiachang Guo, 2023. "Responses of the Leaf Water Physiology and Yield of Grapevine via Different Irrigation Strategies in Extremely Arid Areas," Sustainability, MDPI, vol. 15(4), pages 1-15, February.
    2. Han, Weihua & Sun, Jiaxing & Zhang, Kui & Mao, Lili & Gao, Lili & Hou, Xuemin & Cui, Ningbo & Kang, Wenhuai & Gong, Daozhi, 2023. "Optimizing drip fertigation management based on yield, quality, water and fertilizer use efficiency of wine grape in North China," Agricultural Water Management, Elsevier, vol. 280(C).
    3. Er-Raki, S. & Bouras, E. & Rodriguez, J.C. & Watts, C.J. & Lizarraga-Celaya, C. & Chehbouni, A., 2021. "Parameterization of the AquaCrop model for simulating table grapes growth and water productivity in an arid region of Mexico," Agricultural Water Management, Elsevier, vol. 245(C).
    4. Zang, Zhennan & Zhang, Xiaofan & Mu, Tianqi & Yao, Leilei & Ji, Chunwei & Yang, Qiliang & Liang, Jiaping & Li, Na & Wang, Haidong & Guo, Jinjin & Yang, Ling, 2024. "Combined effects of rain-shelter cultivation and deficit micro-sprinkler irrigation practice on yield, nutrient uptake, economic benefit and water productivity of Panax notoginseng in a semi-arid regi," Agricultural Water Management, Elsevier, vol. 293(C).
    5. Jiaxin Wang & Xinlin He & Ping Gong & Danqi Zhao & Yao Zhang & Zonglan Wang & Jingrui Zhang, 2022. "Optimization of a Water-Saving and Fertilizer-Saving Model for Enhancing Xinjiang Korla Fragrant Pear Yield, Quality, and Net Profits under Water and Fertilizer Coupling," Sustainability, MDPI, vol. 14(14), pages 1-21, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:301:y:2024:i:c:s0378377424002658. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.