IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v2y1979i1p79-91.html
   My bibliography  Save this article

A model for optimal allocation of canal water based on crop production functions

Author

Listed:
  • Gulati, H. S.
  • Murty, V. V. N.

Abstract

No abstract is available for this item.

Suggested Citation

  • Gulati, H. S. & Murty, V. V. N., 1979. "A model for optimal allocation of canal water based on crop production functions," Agricultural Water Management, Elsevier, vol. 2(1), pages 79-91, March.
  • Handle: RePEc:eee:agiwat:v:2:y:1979:i:1:p:79-91
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/0378-3774(79)90015-5
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Qureshi, Muhammad Ejaz & Connor, Jeffery D. & Kirby, Mac & Mainuddin, Mohammed, 2005. "Integrated assessment and management of stochastic water resources in the Murray Darling Basin," 2005 Conference (49th), February 9-11, 2005, Coff's Harbour, Australia 137944, Australian Agricultural and Resource Economics Society.
    2. English, Marshall & Raja, Syed Navaid, 1996. "Perspectives on deficit irrigation," Agricultural Water Management, Elsevier, vol. 32(1), pages 1-14, November.
    3. Xevi, E. & Gilley, J. & Feyen, J., 1996. "Comparative study of two crop yield simulation models," Agricultural Water Management, Elsevier, vol. 30(2), pages 155-173, April.
    4. Gohar, Abdelaziz A. & Cashman, Adrian, 2016. "A methodology to assess the impact of climate variability and change on water resources, food security and economic welfare," Agricultural Systems, Elsevier, vol. 147(C), pages 51-64.
    5. Sarkar, S. & Nanda, M.K. & Biswas, M. & Mukherjee, A. & Kundu, M., 2009. "Different indices to characterize water use pattern of irrigated cauliflower (Brassica oleracea L. var. botrytis) in a hot sub-humid climate of India," Agricultural Water Management, Elsevier, vol. 96(10), pages 1475-1482, October.
    6. Liu, W. Z. & Hunsaker, D. J. & Li, Y. S. & Xie, X. Q. & Wall, G. W., 2002. "Interrelations of yield, evapotranspiration, and water use efficiency from marginal analysis of water production functions," Agricultural Water Management, Elsevier, vol. 56(2), pages 143-151, July.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:2:y:1979:i:1:p:79-91. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.