IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v292y2024ics0378377424000210.html
   My bibliography  Save this article

Film mulched ridge–furrow tillage improves the quality and fertility of dryland agricultural soil by enhancing soil organic carbon and nutrient stratification

Author

Listed:
  • Yang, Fengke
  • He, Baolin
  • Dong, Bo
  • Zhang, Guoping

Abstract

Film mulched ridge–furrow tillage (FMRF) has been successfully used to replace conventional tillage (CT) and increase maize yields in drylands in northwestern China. To increase maize production sustainably, however, investigations are warranted of the underlying mechanism through which FMRF affects soil quality and fertility. Therefore, we conducted an 18-year survey (2003–2020) and a 6-year (2015–2020) field experiment to systematically compare CT and FMRF with regard to soil bulk density (BD) and the concentration, storage, and stratification of soil organic carbon (SOC); labile organic carbon (LOC); total nitrogen, phosphorus, and potassium (TN, TP, and TK, respectively); and available N, P, and K (AN, AP, and AK, respectively). Data were collected in a soil layer of 0–30 cm in the survey and in a soil profile of 0–100 cm with 20-cm increments in the field experiment. The SOC, N, P, and K storage, C:N ratio, and their surface stratification ratios were calculated, and their contributions to soil quality and fertility were systematically evaluated. The results indicated that BD decreased with increasing years of FMRF application. Compared to CT, FMRF significantly increased the concentrations of AK, AP, AN, TK, TP, TN, LOC, and SOC, especially at the 0–40 cm soil horizon and the storage of SOC, TN, TP, and TK in the entire 0–100 cm soil profile, but significantly decreased the C:N ratio at 0–60 cm depth. The stratification ratios of AK, AP, AN, LOC, TK, TN, TP, and SOC were within 1–2.5 and were significantly higher under FMRF than CT for 0–60 cm depth. FMRF also significantly improved soil water status and contributed greatly to increasing the concentration and redistribution of SOC, N, P, and K. Therefore, FMRF improved the soil quality and fertility by increasing the concentration and stratification of SOC, N, P, and K. Further investigations should systematically consider the integrated effects of soil types, farming system, soil microbial processes, and climatic factors.

Suggested Citation

  • Yang, Fengke & He, Baolin & Dong, Bo & Zhang, Guoping, 2024. "Film mulched ridge–furrow tillage improves the quality and fertility of dryland agricultural soil by enhancing soil organic carbon and nutrient stratification," Agricultural Water Management, Elsevier, vol. 292(C).
  • Handle: RePEc:eee:agiwat:v:292:y:2024:i:c:s0378377424000210
    DOI: 10.1016/j.agwat.2024.108686
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377424000210
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2024.108686?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dong, Qin’ge & Yang, Yuchen & Yu, Kun & Feng, Hao, 2018. "Effects of straw mulching and plastic film mulching on improving soil organic carbon and nitrogen fractions, crop yield and water use efficiency in the Loess Plateau, China," Agricultural Water Management, Elsevier, vol. 201(C), pages 133-143.
    2. Ma, Dedi & Chen, Lei & Qu, Hongchao & Wang, Yilin & Misselbrook, Tom & Jiang, Rui, 2018. "Impacts of plastic film mulching on crop yields, soil water, nitrate, and organic carbon in Northwestern China: A meta-analysis," Agricultural Water Management, Elsevier, vol. 202(C), pages 166-173.
    3. Jian Deng & Pingsheng Sun & Fazhu Zhao & Xinhui Han & Gaihe Yang & Yongzhong Feng & Guangxin Ren, 2016. "Soil C, N, P and Its Stratification Ratio Affected by Artificial Vegetation in Subsoil, Loess Plateau China," PLOS ONE, Public Library of Science, vol. 11(3), pages 1-18, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tang, Zijun & Lu, Junsheng & Xiang, Youzhen & Shi, Hongzhao & Sun, Tao & Zhang, Wei & Wang, Han & Zhang, Xueyan & Li, Zhijun & Zhang, Fucang, 2024. "Farmland mulching and optimized irrigation increase water productivity and seed yield by regulating functional parameters of soybean (Glycine max L.) leaves," Agricultural Water Management, Elsevier, vol. 298(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yang, Meijian & Wang, Guiling & Lazin, Rehenuma & Shen, Xinyi & Anagnostou, Emmanouil, 2021. "Impact of planting time soil moisture on cereal crop yield in the Upper Blue Nile Basin: A novel insight towards agricultural water management," Agricultural Water Management, Elsevier, vol. 243(C).
    2. Feng, Yu & Hao, Weiping & Gao, Lili & Li, Haoru & Gong, Daozhi & Cui, Ningbo, 2019. "Comparison of maize water consumption at different scales between mulched and non-mulched croplands," Agricultural Water Management, Elsevier, vol. 216(C), pages 315-324.
    3. Wei Zhu & Ruiquan Qiao & Rui Jiang, 2022. "Modelling of Water and Nitrogen Flow in a Rain-Fed Ridge-Furrow Maize System with Plastic Mulch," Land, MDPI, vol. 11(9), pages 1-18, September.
    4. Xiao, Liangang & Wei, Xi & Wang, Chunying & Zhao, Rongqin, 2023. "Plastic film mulching significantly boosts crop production and water use efficiency but not evapotranspiration in China," Agricultural Water Management, Elsevier, vol. 275(C).
    5. Zhang, Jinxia & Du, Liangliang & Xing, Zisheng & Zhang, Rui & Li, Fuqiang & Zhong, Tao & Ren, Fangfang & Yin, Meng & Ding, Lin & Liu, Xingrong, 2023. "Effects of dual mulching with wheat straw and plastic film under three irrigation regimes on soil nutrients and growth of edible sunflower," Agricultural Water Management, Elsevier, vol. 288(C).
    6. Jovanovic, N. & Pereira, L.S. & Paredes, P. & Pôças, I. & Cantore, V. & Todorovic, M., 2020. "A review of strategies, methods and technologies to reduce non-beneficial consumptive water use on farms considering the FAO56 methods," Agricultural Water Management, Elsevier, vol. 239(C).
    7. Zhe Zhang & Na Li & Zhanxiang Sun & Guanghua Yin & Yanqing Zhang & Wei Bai & Liangshan Feng & John Yang, 2022. "Fall Straw Incorporation with Plastic Film Cover Increases Corn Yield and Water Use Efficiency under a Semi-Arid Climate," Agriculture, MDPI, vol. 12(12), pages 1-12, December.
    8. Dong Guo & Chuanyong Chen & Baoyuan Zhou & Di Ma & William D. Batchelor & Xiao Han & Zaisong Ding & Mei Du & Ming Zhao & Ming Li & Wei Ma, 2022. "Drip Fertigation with Relatively Low Water and N Input Achieved Higher Grain Yield of Maize by Improving Pre- and Post-Silking Dry Matter Accumulation," Sustainability, MDPI, vol. 14(13), pages 1-20, June.
    9. Wang, Xing & Zhang, Kemeng & Li, Jing & Li, Qun & Na, Wenjuan & Gao, Yuankang & Gao, Zhiyong, 2024. "Response of soil water in deep dry soil layers to monthly precipitation, plant species, and surface mulch in a semi-arid hilly loess region of China," Agricultural Water Management, Elsevier, vol. 291(C).
    10. Hu, Yajin & Ma, Penghui & Duan, Chenxiao & Wu, Shufang & Feng, Hao & Zou, Yufeng, 2020. "Black plastic film combined with straw mulching delays senescence and increases summer maize yield in northwest China," Agricultural Water Management, Elsevier, vol. 231(C).
    11. Thidar, Myint & Gong, Daozhi & Mei, Xurong & Gao, Lili & Li, Haoru & Hao, Weiping & Gu, Fengxue, 2020. "Mulching improved soil water, root distribution and yield of maize in the Loess Plateau of Northwest China," Agricultural Water Management, Elsevier, vol. 241(C).
    12. Fu, Wei & Fan, Jun & Hao, Mingde & Hu, Jinsheng & Wang, Huan, 2021. "Evaluating the effects of plastic film mulching patterns on cultivation of winter wheat in a dryland cropping system on the Loess Plateau, China," Agricultural Water Management, Elsevier, vol. 244(C).
    13. Qin, Shujing & Li, Sien & Cheng, Lei & Zhang, Lu & Qiu, Rangjian & Liu, Pan & Xi, Haiyang, 2023. "Partitioning evapotranspiration in partially mulched interplanted croplands by improving the Shuttleworth-Wallace model," Agricultural Water Management, Elsevier, vol. 276(C).
    14. Li, Shuo & Wang, Shujuan & Shi, Jianglan & Tian, Xiaohong & Wu, Jiechen, 2022. "Economic, energy and environmental performance assessment on wheat production under water-saving cultivation strategies," Energy, Elsevier, vol. 261(PB).
    15. Xuemei Lan & Shouxi Chai & Jeffrey A. Coulter & Hongbo Cheng & Lei Chang & Caixia Huang & Rui Li & Yuwei Chai & Yawei Li & Jiantao Ma & Li Li, 2020. "Maize Straw Strip Mulching as a Replacement for Plastic Film Mulching in Maize Production in a Semiarid Region," Sustainability, MDPI, vol. 12(15), pages 1-26, August.
    16. Chaobiao Meng & Jianyu Zhao & Ning Wang & Kaijing Yang & Fengxin Wang, 2022. "Black Plastic Film Mulching Increases Soil Nitrous Oxide Emissions in Arid Potato Fields," IJERPH, MDPI, vol. 19(23), pages 1-12, November.
    17. Gao, Haihe & Yan, Changrong & Liu, Qin & Li, Zhen & Yang, Xiao & Qi, Ruimin, 2019. "Exploring optimal soil mulching to enhance yield and water use efficiency in maize cropping in China: A meta-analysis," Agricultural Water Management, Elsevier, vol. 225(C).
    18. Amin, M.G. Mostofa & Mahbub, S.M. Mubtasim & Hasan, Md. Moudud & Pervin, Wafa & Sharmin, Jinat & Hossain, Md. Delwar, 2023. "Plant–water relations in subtropical maize fields under mulching and organic fertilization," Agricultural Water Management, Elsevier, vol. 286(C).
    19. Zhang, Shaohui & Wang, Haidong & Sun, Xin & Fan, Junliang & Zhang, Fucang & Zheng, Jing & Li, Yuepeng, 2021. "Effects of farming practices on yield and crop water productivity of wheat, maize and potato in China: A meta-analysis," Agricultural Water Management, Elsevier, vol. 243(C).
    20. Pasquale Pazienza & Caterina De Lucia, 2020. "The EU policy for a plastic economy: Reflections on a sectoral implementation strategy," Business Strategy and the Environment, Wiley Blackwell, vol. 29(2), pages 779-788, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:292:y:2024:i:c:s0378377424000210. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.