IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v278y2023ics037837742300029x.html
   My bibliography  Save this article

Assessment of the hydraulic and filter performance of different drainage stone aggregates to elucidate an optimum size range for use in clay-textured soils

Author

Listed:
  • Byrne, Ian
  • Healy, Mark Gerard
  • Fenton, Owen
  • Tuohy, Patrick

Abstract

On poorly drained grassland farms in Ireland, stone aggregates remain the only in-field drain envelope material used by contractors. A variety of aggregate sizes and lithologies are currently in use, but their performance in clay-textured mineral soils is unknown. In practice, this may result in ad-hoc system performance and a varied lifespan due to sediment ingress. The aim of this study was to evaluate the hydraulic and filter performance of a range of aggregate gradations in clay-textured mineral soils. Nine aggregates (three replicates of each) were examined in laboratory units containing clay-textured soil, with a perforated drainpipe surrounded by an aggregate envelope ranging in size from 0.7 to 62 mm and a constant 0.4 m head of water above the soil surface. To determine the hydraulic performance of the envelope, the discharge rate of water through the drainage pipe outlet was measured over 38 days. To determine the filter performance, sediment loss, sediment settlement in the drainpipe, and ingress of sediment into the envelope were measured. The results indicated that only aggregates in the 0.7–19 mm size range performed adequately from both the hydraulic and filter perspectives and were deemed suitable for use with a clay-textured soil. Discharge appeared to be inversely related to aggregate size, with larger discharges being measured in the smaller aggregate sizes and smaller discharges measured in the larger aggregate sizes (exception: Aggregate 2). For all aggregates examined, discharge was greatest at the start of the experiment before reducing over time. When the cost of the aggregate material is also considered, aggregates in the lower size range are 18–50% more expensive than aggregates in the higher size range. Aggregates with particle sizes ranging from 0.7–19 mm are recommended for in situ field testing in clay-textured soils.

Suggested Citation

  • Byrne, Ian & Healy, Mark Gerard & Fenton, Owen & Tuohy, Patrick, 2023. "Assessment of the hydraulic and filter performance of different drainage stone aggregates to elucidate an optimum size range for use in clay-textured soils," Agricultural Water Management, Elsevier, vol. 278(C).
  • Handle: RePEc:eee:agiwat:v:278:y:2023:i:c:s037837742300029x
    DOI: 10.1016/j.agwat.2023.108164
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S037837742300029X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2023.108164?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tuohy, P. & O’ Loughlin, J. & Peyton, D. & Fenton, O., 2018. "The performance and behavior of land drainage systems and their impact on field scale hydrology in an increasingly volatile climate," Agricultural Water Management, Elsevier, vol. 210(C), pages 96-107.
    2. El-Sadany Salem, H. & DierickX, W. & Willardson, L. S. & Abdel-Dayem, M. S., 1995. "Laboratory evaluation of locally made synthetic envelopes for subsurface drainage in Egypt," Agricultural Water Management, Elsevier, vol. 27(3-4), pages 351-363, July.
    3. Michael J. Castellano & Sotirios V. Archontoulis & Matthew J. Helmers & Hanna J. Poffenbarger & Johan Six, 2019. "Sustainable intensification of agricultural drainage," Nature Sustainability, Nature, vol. 2(10), pages 914-921, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Giovani Preza-Fontes & Junming Wang & Muhammad Umar & Meilan Qi & Kamaljit Banger & Cameron Pittelkow & Emerson Nafziger, 2021. "Development of an Online Tool for Tracking Soil Nitrogen to Improve the Environmental Performance of Maize Production," Sustainability, MDPI, vol. 13(10), pages 1-14, May.
    2. Mourtzinis, Spyridon & Andrade, José F. & Grassini, Patricio & Edreira, Juan I. Rattalino & Kandel, Hans & Naeve, Seth & Nelson, Kelly A. & Helmers, Matthew & Conley, Shawn P., 2021. "Assessing benefits of artificial drainage on soybean yield in the North Central US region," Agricultural Water Management, Elsevier, vol. 243(C).
    3. Eric C. Edwards & Walter N. Thurman, 2022. "The Economics of Climatic Adaptation: Agricultural Drainage in the United States," NBER Chapters, in: American Agriculture, Water Resources, and Climate Change, pages 29-51, National Bureau of Economic Research, Inc.
    4. Sisi Li & Yanhua Zhuang & Hongbin Liu & Zhen Wang & Fulin Zhang & Mingquan Lv & Limei Zhai & Xianpeng Fan & Shiwei Niu & Jingrui Chen & Changxu Xu & Na Wang & Shuhe Ruan & Wangzheng Shen & Menghan Mi , 2023. "Enhancing rice production sustainability and resilience via reactivating small water bodies for irrigation and drainage," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    5. Ghane, Ehsan & Askar, Manal H. & Skaggs, R. Wayne, 2021. "Design drainage rates to optimize crop production for subsurface-drained fields," Agricultural Water Management, Elsevier, vol. 257(C).
    6. Youssef, Mohamed A. & Strock, Jeffrey & Bagheri, Ehsan & Reinhart, Benjamin D. & Abendroth, Lori J. & Chighladze, Giorgi & Ghane, Ehsan & Shedekar, Vinayak & Fausey (Ret.), Norman R. & Frankenberger, , 2023. "Impact of controlled drainage on corn yield under varying precipitation patterns: A synthesis of studies across the U.S. Midwest and Southeast," Agricultural Water Management, Elsevier, vol. 275(C).
    7. Nahkala, Brady A. & Kaleita, Amy L. & Soupir, Michelle L., 2021. "Characterization of prairie pothole inundation using AnnAGNPS under varying management and drainage scenarios," Agricultural Water Management, Elsevier, vol. 255(C).
    8. Mohammad Valipour & Jens Krasilnikof & Stavros Yannopoulos & Rohitashw Kumar & Jun Deng & Paolo Roccaro & Larry Mays & Mark E. Grismer & Andreas N. Angelakis, 2020. "The Evolution of Agricultural Drainage from the Earliest Times to the Present," Sustainability, MDPI, vol. 12(1), pages 1-30, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:278:y:2023:i:c:s037837742300029x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.