IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v276y2023ics0378377422006187.html
   My bibliography  Save this article

Water use of short-rotation coppice American sycamore (Platanus occidentalis L.) for bioenergy during establishment on marginal land in the North Carolina Piedmont

Author

Listed:
  • Carvalho, Henrique D.R.
  • Aguilos, Maricar M.
  • Ile, Omoyemeh J.
  • Howard, Adam M.
  • King, John S.
  • Heitman, Joshua L.

Abstract

American sycamore (Platanus occidentalis L.) is a hardwood species that can be integrated into short-rotation coppice (SRC) production systems for bioenergy in the southeastern USA. Due to high growth rates and low input requirements, sycamore is regarded as a promising second-generation bioenergy woody crop suitable for degraded or marginal lands. However, little is known about sycamore water use for the conditions of North Carolina (NC), especially during the establishment year when trees are most sensitive to soil water deficits. We evaluated energy fluxes and actual crop evapotranspiration (ETc act) rates of sycamore SRC during the establishment year on marginal land in the Piedmont physiographic region of NC. Our overall goal was to better understand the factors controlling the evaporative demand of sycamore and its sensitivity to drought stress during establishment. Total ETc act was 482 mm, which was 95% of the total rainfall at the site. ETc act rates increased with precipitation and with tree development, reaching a maximum of 5.7 mm d−1. Although severe water stress was not observed during the study period, a moderate drought occurred from mid-August to mid-September, during which a 13-day drying cycle caused ETc act rates to decrease by 30%. The sycamore SRC transitioned from an “energy-limited” to a “water-limited” ETc act regime when water content in the upper 5 cm of soil was about 0.10 m3 m−3, indicating that the sycamore field relied on water available within the upper soil layers. Measurements suggested that trees may not yet have developed a root system sufficient to sustain transpiration during dry spells and that water use of the sycamore field was highly coupled to precipitation during the establishment year.

Suggested Citation

  • Carvalho, Henrique D.R. & Aguilos, Maricar M. & Ile, Omoyemeh J. & Howard, Adam M. & King, John S. & Heitman, Joshua L., 2023. "Water use of short-rotation coppice American sycamore (Platanus occidentalis L.) for bioenergy during establishment on marginal land in the North Carolina Piedmont," Agricultural Water Management, Elsevier, vol. 276(C).
  • Handle: RePEc:eee:agiwat:v:276:y:2023:i:c:s0378377422006187
    DOI: 10.1016/j.agwat.2022.108071
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377422006187
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2022.108071?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hou, L.G. & Xiao, H.L. & Si, J.H. & Xiao, S.C. & Zhou, M.X. & Yang, Y.G., 2010. "Evapotranspiration and crop coefficient of Populus euphratica Oliv forest during the growing season in the extreme arid region northwest China," Agricultural Water Management, Elsevier, vol. 97(2), pages 351-356, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Haiming Yan & Jinyan Zhan & Bing Liu & Yongwei Yuan, 2014. "Model Estimation of Water Use Efficiency for Soil Conservation in the Lower Heihe River Basin, Northwest China during 2000–2008," Sustainability, MDPI, vol. 6(9), pages 1-17, September.
    2. Pengrui Ai & Yingjie Ma, 2020. "Estimation of Evapotranspiration of a Jujube/Cotton Intercropping System in an Arid Area Based on the Dual Crop Coefficient Method," Agriculture, MDPI, vol. 10(3), pages 1-14, March.
    3. Xiaohu Wen & Jianhua Si & Zhibin He & Jun Wu & Hongbo Shao & Haijiao Yu, 2015. "Support-Vector-Machine-Based Models for Modeling Daily Reference Evapotranspiration With Limited Climatic Data in Extreme Arid Regions," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(9), pages 3195-3209, July.
    4. Xinyuan Zhang & Lu Zhang & Zhiming Zhang, 2024. "Spatial Optimization Based on the Trade-Off between Ecosystem Conservation and Opportunity Cost of Tarim National Park in Xinjiang, China," Land, MDPI, vol. 13(1), pages 1-15, January.
    5. Bezerra, Bergson G. & da Silva, Bernardo B. & Bezerra, José R.C. & Sofiatti, Valdinei & dos Santos, Carlos A.C., 2012. "Evapotranspiration and crop coefficient for sprinkler-irrigated cotton crop in Apodi Plateau semiarid lands of Brazil," Agricultural Water Management, Elsevier, vol. 107(C), pages 86-93.
    6. Cirella, Giuseppe T. & Zerbe, Stefan, 2014. "Sustainable Water Management and Wetland Restoration Strategies in Northern China," MPRA Paper 120233, University Library of Munich, Germany.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:276:y:2023:i:c:s0378377422006187. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.