IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v275y2023ics0378377422005741.html
   My bibliography  Save this article

Time series global sensitivity analysis of genetic parameters of CERES-maize model under water stresses at different growth stages

Author

Listed:
  • Ma, Haijiao
  • Wang, Jianliang
  • Liu, Tao
  • Guo, Yahui
  • Zhou, Yang
  • Yang, Tianle
  • Zhang, Weijun
  • Sun, Chengming

Abstract

Sensitivity analysis (SA) is used to identify the effects of crop model input parameters on model results. Previous studies have indicated that the CERES-Maize model was difficult to calibrate under the different water stress conditions. A genetic parameters time-series sensitivity analysis is needed to guide parameter optimization. The objectives of this study were to: (i) comprehensively quantify the genetic parameters in CERES-Maize based on the extended Fourier amplitude sensitivity test. The sensitivity of CERES-Maize output variables was analyzed under different water stress conditions; (ii) determine the sensitivities of output variables to genetic parameters during the growth period. The results demonstrated that output variable sensitivity varied in response to different water stress conditions. The total sensitivity index (TSI) and time-dependent TSI of crop parameters were more sensitive than the first sensitivity index (FOSI) and time-dependent FOSI of crop genetic parameters. The sensitivities of two years (2013 and 2014) based on FOSI and time-series FOSI were consistent; some differences existed between simulations based on TSI and time-series TSI. Under different water management conditions, the sensitivity of phyllochron interval (PHINT) to biomass decreased earlier and faster when drought occurred in the early growth period (D1 and D2). The time series of sensitivity index was consistent with the CK treatment when drought happened in the later growth periods (D3 and D2). The two parameters of PHINT and thermal time from emergence to end of juvenile (P1) were most sensitive to leaf area index (LAI) when drought occurred in the early growth periods (D1 and D2). In addition to PHINT and P1, other parameters also had sensitivities for LAI when drought occurred in later growth periods (D3 and D4). Future studies should focus on the response of dynamic output variable to soil parameters and weather conditions over the growing season in order to calibrate and apply the CERES-Maize model.

Suggested Citation

  • Ma, Haijiao & Wang, Jianliang & Liu, Tao & Guo, Yahui & Zhou, Yang & Yang, Tianle & Zhang, Weijun & Sun, Chengming, 2023. "Time series global sensitivity analysis of genetic parameters of CERES-maize model under water stresses at different growth stages," Agricultural Water Management, Elsevier, vol. 275(C).
  • Handle: RePEc:eee:agiwat:v:275:y:2023:i:c:s0378377422005741
    DOI: 10.1016/j.agwat.2022.108027
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377422005741
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2022.108027?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. DeJonge, Kendall C. & Ascough, James C. & Ahmadi, Mehdi & Andales, Allan A. & Arabi, Mazdak, 2012. "Global sensitivity and uncertainty analysis of a dynamic agroecosystem model under different irrigation treatments," Ecological Modelling, Elsevier, vol. 231(C), pages 113-125.
    2. Shrestha, Nirman & Raes, Dirk & Vanuytrecht, Eline & Sah, Shrawan Kumar, 2013. "Cereal yield stabilization in Terai (Nepal) by water and soil fertility management modeling," Agricultural Water Management, Elsevier, vol. 122(C), pages 53-62.
    3. Andarzian, B. & Bannayan, M. & Steduto, P. & Mazraeh, H. & Barati, M.E. & Barati, M.A. & Rahnama, A., 2011. "Validation and testing of the AquaCrop model under full and deficit irrigated wheat production in Iran," Agricultural Water Management, Elsevier, vol. 100(1), pages 1-8.
    4. Attia, Ahmed & Rajan, Nithya & Xue, Qingwu & Nair, Shyam & Ibrahim, Amir & Hays, Dirk, 2016. "Application of DSSAT-CERES-Wheat model to simulate winter wheat response to irrigation management in the Texas High Plains," Agricultural Water Management, Elsevier, vol. 165(C), pages 50-60.
    5. Wang, Fugui & Mladenoff, David J. & Forrester, Jodi A. & Keough, Cindy & Parton, William J., 2013. "Global sensitivity analysis of a modified CENTURY model for simulating impacts of harvesting fine woody biomass for bioenergy," Ecological Modelling, Elsevier, vol. 259(C), pages 16-23.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hao, Shirui & Ryu, Dongryeol & Western, Andrew W & Perry, Eileen & Bogena, Heye & Franssen, Harrie Jan Hendricks, 2024. "Global sensitivity analysis of APSIM-wheat yield predictions to model parameters and inputs," Ecological Modelling, Elsevier, vol. 487(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Chao & Xie, Ziang & Wang, Qiaojuan & Tang, Min & Feng, Shaoyuan & Cai, Huanjie, 2022. "AquaCrop modeling to explore optimal irrigation of winter wheat for improving grain yield and water productivity," Agricultural Water Management, Elsevier, vol. 266(C).
    2. Ahmadzadeh Araji, Hamidreza & Wayayok, Aimrun & Massah Bavani, Alireza & Amiri, Ebrahim & Abdullah, Ahmad Fikri & Daneshian, Jahanfar & Teh, C.B.S., 2018. "Impacts of climate change on soybean production under different treatments of field experiments considering the uncertainty of general circulation models," Agricultural Water Management, Elsevier, vol. 205(C), pages 63-71.
    3. Feng, Dingrui & Li, Guangyong & Wang, Dan & Wulazibieke, Mierguli & Cai, Mingkun & Kang, Jing & Yuan, Zicheng & Xu, Houcheng, 2022. "Evaluation of AquaCrop model performance under mulched drip irrigation for maize in Northeast China," Agricultural Water Management, Elsevier, vol. 261(C).
    4. Zhao, Jie & Han, Tong & Wang, Chong & Jia, Hao & Worqlul, Abeyou W. & Norelli, Nicole & Zeng, Zhaohai & Chu, Qingquan, 2020. "Optimizing irrigation strategies to synchronously improve the yield and water productivity of winter wheat under interannual precipitation variability in the North China Plain," Agricultural Water Management, Elsevier, vol. 240(C).
    5. Abi Saab, Marie Therese & Todorovic, Mladen & Albrizio, Rossella, 2015. "Comparing AquaCrop and CropSyst models in simulating barley growth and yield under different water and nitrogen regimes. Does calibration year influence the performance of crop growth models?," Agricultural Water Management, Elsevier, vol. 147(C), pages 21-33.
    6. Mustafa, S.M.T. & Vanuytrecht, E. & Huysmans, M., 2017. "Combined deficit irrigation and soil fertility management on different soil textures to improve wheat yield in drought-prone Bangladesh," Agricultural Water Management, Elsevier, vol. 191(C), pages 124-137.
    7. Seyed Ahmadi & Elnaz Mosallaeepour & Ali Kamgar-Haghighi & Ali Sepaskhah, 2015. "Modeling Maize Yield and Soil Water Content with AquaCrop Under Full and Deficit Irrigation Managements," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(8), pages 2837-2853, June.
    8. Chunlei Wang & Liping Feng & Lu Wu & Chen Cheng & Yizhuo Li & Jintao Yan & Jiachen Gao & Fu Chen, 2020. "Assessment of Genotypes and Management Strategies to Improve Resilience of Winter Wheat Production," Sustainability, MDPI, vol. 12(4), pages 1-21, February.
    9. Zhao, Gang & Bryan, Brett A. & Song, Xiaodong, 2014. "Sensitivity and uncertainty analysis of the APSIM-wheat model: Interactions between cultivar, environmental, and management parameters," Ecological Modelling, Elsevier, vol. 279(C), pages 1-11.
    10. Si, Zhuanyun & Zain, Muhammad & Li, Shuang & Liu, Junming & Liang, Yueping & Gao, Yang & Duan, Aiwang, 2021. "Optimizing nitrogen application for drip-irrigated winter wheat using the DSSAT-CERES-Wheat model," Agricultural Water Management, Elsevier, vol. 244(C).
    11. Han, Congying & Zhang, Baozhong & Chen, He & Liu, Yu & Wei, Zheng, 2020. "Novel approach of upscaling the FAO AquaCrop model into regional scale by using distributed crop parameters derived from remote sensing data," Agricultural Water Management, Elsevier, vol. 240(C).
    12. Morris, David J. & Speirs, Douglas C. & Cameron, Angus I. & Heath, Michael R., 2014. "Global sensitivity analysis of an end-to-end marine ecosystem model of the North Sea: Factors affecting the biomass of fish and benthos," Ecological Modelling, Elsevier, vol. 273(C), pages 251-263.
    13. Devkota, M. & Devkota, K.P. & Acharya, S. & McDonald, A.J., 2019. "Increasing profitability, yields and yield stability through sustainable crop establishment practices in the rice-wheat systems of Nepal," Agricultural Systems, Elsevier, vol. 173(C), pages 414-423.
    14. Wang, Haidong & Cheng, Minghui & Liao, Zhenqi & Guo, Jinjin & Zhang, Fucang & Fan, Junliang & Feng, Hao & Yang, Qiliang & Wu, Lifeng & Wang, Xiukang, 2023. "Performance evaluation of AquaCrop and DSSAT-SUBSTOR-Potato models in simulating potato growth, yield and water productivity under various drip fertigation regimes," Agricultural Water Management, Elsevier, vol. 276(C).
    15. Ran, Hui & Kang, Shaozhong & Li, Fusheng & Du, Taisheng & Tong, Ling & Li, Sien & Ding, Risheng & Zhang, Xiaotao, 2018. "Parameterization of the AquaCrop model for full and deficit irrigated maize for seed production in arid Northwest China," Agricultural Water Management, Elsevier, vol. 203(C), pages 438-450.
    16. Katerji, Nader & Campi, Pasquale & Mastrorilli, Marcello, 2013. "Productivity, evapotranspiration, and water use efficiency of corn and tomato crops simulated by AquaCrop under contrasting water stress conditions in the Mediterranean region," Agricultural Water Management, Elsevier, vol. 130(C), pages 14-26.
    17. Kai Yin & Dengsheng Lu & Yichen Tian & Qianjun Zhao & Chao Yuan, 2014. "Evaluation of Carbon and Oxygen Balances in Urban Ecosystems Using Land Use/Land Cover and Statistical Data," Sustainability, MDPI, vol. 7(1), pages 1-27, December.
    18. Attia, Ahmed & El-Hendawy, Salah & Al-Suhaibani, Nasser & Alotaibi, Majed & Tahir, Muhammad Usman & Kamal, Khaled Y., 2021. "Evaluating deficit irrigation scheduling strategies to improve yield and water productivity of maize in arid environment using simulation," Agricultural Water Management, Elsevier, vol. 249(C).
    19. Zuluaga-Guerra, Paula Andrea & Martinez-Fernandez, Julia & Esteve-Selma, Miguel Angel & Dell'Angelo, Jampel, 2023. "A socio-ecological model of the Segura River basin, Spain," Ecological Modelling, Elsevier, vol. 478(C).
    20. Zhu, Xiufang & Xu, Kun & Liu, Ying & Guo, Rui & Chen, Lingyi, 2021. "Assessing the vulnerability and risk of maize to drought in China based on the AquaCrop model," Agricultural Systems, Elsevier, vol. 189(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:275:y:2023:i:c:s0378377422005741. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.