IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v273y2022ics0378377422004309.html
   My bibliography  Save this article

Assessing the response of orchard productivity to soil water depletion using field sampling and modeling methods

Author

Listed:
  • Zhang, Yuanhong
  • Peng, Xingxing
  • Ning, Fang
  • Dong, Zhaoyang
  • Wang, Rui
  • Li, Jun

Abstract

Soil water deficit in apple orchards is a common phenomenon related to land degradation on the Loess Plateau. However, little is known regarding the degree of soil water depletion and its effects on orchard productivity in rainfed apple orchards. We used a combination of field sampling and modeling to understand the impact of apple orchards on soil water availability and changes in orchard productivity over a long-term time series. A total of 51 soil profiles from eight experimental sites in the Loess Plateau, were collected in 2010 and 2016 and modeling was used to evaluate the long-term effects of apple plantations on soil water depletion and orchard productivity. A process-based model, the Environmental Policy Integrated Climate (EPIC), was calibrated and validated using survey data from field experiments. The calibrated EPIC model could well simulate soil moisture and orchard productivity with relative root mean square errors (RRMSE) of 11.12 % and 2.71 %, respectively. Field sampling and modeling showed that conversion from farmlands to orchards decreased soil moisture, leading to severe soil water depletion (SWD) in the 0–15.0 m soil profiles. Stand age was the main factor influencing soil moisture, and SWD gradually increased with increasing stand age. Depleted soil water led to land degradation and decreased orchard productivity, especially in water-limited regions. Simulation results suggested that the optimal planting density and fertilizer application rates were often related to variability in climatic conditions; therefore, appropriate management practices need to be adapted to local natural conditions. Although SWD in apple orchards is inevitable, the detrimental effects could be minimized during orchard development, provided that appropriate management measures are selected based on precipitation and soil water conditions. These findings may provide a basis for evaluating the extent of SWD and its effect on orchard productivity in dryland apple orchards.

Suggested Citation

  • Zhang, Yuanhong & Peng, Xingxing & Ning, Fang & Dong, Zhaoyang & Wang, Rui & Li, Jun, 2022. "Assessing the response of orchard productivity to soil water depletion using field sampling and modeling methods," Agricultural Water Management, Elsevier, vol. 273(C).
  • Handle: RePEc:eee:agiwat:v:273:y:2022:i:c:s0378377422004309
    DOI: 10.1016/j.agwat.2022.107883
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377422004309
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2022.107883?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Balkovič, Juraj & van der Velde, Marijn & Schmid, Erwin & Skalský, Rastislav & Khabarov, Nikolay & Obersteiner, Michael & Stürmer, Bernhard & Xiong, Wei, 2013. "Pan-European crop modelling with EPIC: Implementation, up-scaling and regional crop yield validation," Agricultural Systems, Elsevier, vol. 120(C), pages 61-75.
    2. Reidsma, Pytrik & Ewert, Frank & Boogaard, Hendrik & Diepen, Kees van, 2009. "Regional crop modelling in Europe: The impact of climatic conditions and farm characteristics on maize yields," Agricultural Systems, Elsevier, vol. 100(1-3), pages 51-60, April.
    3. Yang, Hui & Du, Taisheng & Mao, Xiaomin & Ding, Risheng & Shukla, Manoj K., 2019. "A comprehensive method of evaluating the impact of drought and salt stress on tomato growth and fruit quality based on EPIC growth model," Agricultural Water Management, Elsevier, vol. 213(C), pages 116-127.
    4. Xiong, Wei & Balkovič, Juraj & van der Velde, Marijn & Zhang, Xuesong & Izaurralde, R. César & Skalský, Rastislav & Lin, Erda & Mueller, Nathan & Obersteiner, Michael, 2014. "A calibration procedure to improve global rice yield simulations with EPIC," Ecological Modelling, Elsevier, vol. 273(C), pages 128-139.
    5. Laibao Liu & Lukas Gudmundsson & Mathias Hauser & Dahe Qin & Shuangcheng Li & Sonia I. Seneviratne, 2020. "Soil moisture dominates dryness stress on ecosystem production globally," Nature Communications, Nature, vol. 11(1), pages 1-9, December.
    6. Ko, Jonghan & Piccinni, Giovanni & Steglich, Evelyn, 2009. "Using EPIC model to manage irrigated cotton and maize," Agricultural Water Management, Elsevier, vol. 96(9), pages 1323-1331, September.
    7. Bossio, Deborah & Geheb, Kim & Critchley, William, 2010. "Managing water by managing land: Addressing land degradation to improve water productivity and rural livelihoods," Agricultural Water Management, Elsevier, vol. 97(4), pages 536-542, April.
    8. Wang, Xuechun & Samo, Naseem & Wang, Mengran & Qadir, Muslim & Yang, Guotao & Hu, Yungao & Ali, Kawsar, 2019. "Dynamic changing of soil water in artificial ryegrass land in the hilly regions of Sichuan Basin area," Agricultural Water Management, Elsevier, vol. 221(C), pages 99-108.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Xuechun & Samo, Naseem & Wang, Mengran & Qadir, Muslim & Yang, Guotao & Hu, Yungao & Ali, Kawsar, 2019. "Dynamic changing of soil water in artificial ryegrass land in the hilly regions of Sichuan Basin area," Agricultural Water Management, Elsevier, vol. 221(C), pages 99-108.
    2. Tatsumi, Kenichi, 2016. "Effects of automatic multi-objective optimization of crop models on corn yield reproducibility in the U.S.A," Ecological Modelling, Elsevier, vol. 322(C), pages 124-137.
    3. Dennis Junior Choruma & Frank Chukwuzuoke Akamagwuna & Nelson Oghenekaro Odume, 2022. "Simulating the Impacts of Climate Change on Maize Yields Using EPIC: A Case Study in the Eastern Cape Province of South Africa," Agriculture, MDPI, vol. 12(6), pages 1-24, May.
    4. Wang, Zhiqiang & Ye, Li & Jiang, Jingyi & Fan, Yida & Zhang, Xiaoran, 2022. "Review of application of EPIC crop growth model," Ecological Modelling, Elsevier, vol. 467(C).
    5. Le, Kieu N. & Jeong, Jaehak & Reyes, Manuel R. & Jha, Manoj K. & Gassman, Philip W. & Doro, Luca & Hok, Lyda & Boulakia, Stéphane, 2018. "Evaluation of the performance of the EPIC model for yield and biomass simulation under conservation systems in Cambodia," Agricultural Systems, Elsevier, vol. 166(C), pages 90-100.
    6. Xiong, Wei & Balkovič, Juraj & van der Velde, Marijn & Zhang, Xuesong & Izaurralde, R. César & Skalský, Rastislav & Lin, Erda & Mueller, Nathan & Obersteiner, Michael, 2014. "A calibration procedure to improve global rice yield simulations with EPIC," Ecological Modelling, Elsevier, vol. 273(C), pages 128-139.
    7. Zhang, Jie & Campana, Pietro Elia & Yao, Tian & Zhang, Yang & Lundblad, Anders & Melton, Forrest & Yan, Jinyue, 2018. "The water-food-energy nexus optimization approach to combat agricultural drought: a case study in the United States," Applied Energy, Elsevier, vol. 227(C), pages 449-464.
    8. Shi, Hu & Xingguo, Mo, 2011. "Interpreting spatial heterogeneity of crop yield with a process model and remote sensing," Ecological Modelling, Elsevier, vol. 222(14), pages 2530-2541.
    9. Chen, Shang & He, Liang & Cao, Yinxuan & Wang, Runhong & Wu, Lianhai & Wang, Zhao & Zou, Yufeng & Siddique, Kadambot H.M. & Xiong, Wei & Liu, Manshuang & Feng, Hao & Yu, Qiang & Wang, Xiaoming & He, J, 2021. "Comparisons among four different upscaling strategies for cultivar genetic parameters in rainfed spring wheat phenology simulations with the DSSAT-CERES-Wheat model," Agricultural Water Management, Elsevier, vol. 258(C).
    10. Alejandro del Pozo & Nidia Brunel-Saldias & Alejandra Engler & Samuel Ortega-Farias & Cesar Acevedo-Opazo & Gustavo A. Lobos & Roberto Jara-Rojas & Marco A. Molina-Montenegro, 2019. "Climate Change Impacts and Adaptation Strategies of Agriculture in Mediterranean-Climate Regions (MCRs)," Sustainability, MDPI, vol. 11(10), pages 1-16, May.
    11. Hanjra, Munir A. & Qureshi, M. Ejaz, 2010. "Global water crisis and future food security in an era of climate change," Food Policy, Elsevier, vol. 35(5), pages 365-377, October.
    12. Dono, Gabriele & Cortignani, Raffaele & Giraldo, Luca & Doro, Luca & Roggero, Pier Paolo, 2014. "Assessing the awareness of climate change as a factor of adaptation in the agricultural sector," 2014 Third Congress, June 25-27, 2014, Alghero, Italy 173110, Italian Association of Agricultural and Applied Economics (AIEAA).
    13. Wei Wei & Jiping Wang & Libang Ma & Xufeng Wang & Binbin Xie & Junju Zhou & Haoyan Zhang, 2024. "Global Drought-Wetness Conditions Monitoring Based on Multi-Source Remote Sensing Data," Land, MDPI, vol. 13(1), pages 1-19, January.
    14. Rosanna Salvia & Valentina Quaranta & Adele Sateriano & Giovanni Quaranta, 2022. "Land Resource Depletion, Regional Disparities, and the Claim for a Renewed ‘Sustainability Thinking’ under Early Desertification Conditions," Resources, MDPI, vol. 11(3), pages 1-14, March.
    15. Mitter, Hermine & Schmid, Erwin, 2021. "Informing groundwater policies in semi-arid agricultural production regions under stochastic climate scenario impacts," Ecological Economics, Elsevier, vol. 180(C).
    16. Riao, Dao & Guga, Suri & Bao, Yongbin & Liu, Xingping & Tong, Zhijun & Zhang, Jiquan, 2023. "Non-overlap of suitable areas of agro-climatic resources and main planting areas is the main reason for potato drought disaster in Inner Mongolia, China," Agricultural Water Management, Elsevier, vol. 275(C).
    17. Martin, G. & Duru, M. & Schellberg, J. & Ewert, F., 2012. "Simulations of plant productivity are affected by modelling approaches of farm management," Agricultural Systems, Elsevier, vol. 109(C), pages 25-34.
    18. Popova, Zornitsa & Pereira, Luis S., 2011. "Modelling for maize irrigation scheduling using long term experimental data from Plovdiv region, Bulgaria," Agricultural Water Management, Elsevier, vol. 98(4), pages 675-683, February.
    19. Sourav Mukherjee & Ashok Kumar Mishra & Jakob Zscheischler & Dara Entekhabi, 2023. "Interaction between dry and hot extremes at a global scale using a cascade modeling framework," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    20. Palazzo,Amanda & Valin,Hugo Jean Pierre & Batka,Miroslav & Havlík,Petr, 2019. "Investment Needs for Irrigation Infrastructure along Different Socioeconomic Pathways," Policy Research Working Paper Series 8744, The World Bank.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:273:y:2022:i:c:s0378377422004309. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.