IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v256y2021ics0378377421004005.html
   My bibliography  Save this article

Reducing pesticide transport in surface and subsurface irrigation return flow in specialty crop production

Author

Listed:
  • Abdi, Damon E.
  • Owen, James S.
  • Wilson, P. Christopher
  • Hinz, Francisca O.
  • Cregg, Bert
  • Fernandez, R. Thomas

Abstract

This study investigated the transport of 9 pesticides in surface and subsurface irrigation return flow from a container-plant production system over 3 16-day monitoring periods. Pesticides were applied 3 times during the year and the pesticides were selected to provide a range of physiochemical properties. Pesticides are most commonly transported in water and irrigation return flow is a driving factor, therefore, irrigation methods were investigated to determine effects on irrigation return flow volume and transport of pesticides. A control overhead irrigation and two treatments irrigating based on substrate volumetric moisture content (θ) were used. Pesticide transport in irrigation return flow was related to days after application, physiochemical properties and irrigation method. Additionally, pesticide transport was disproportionately reduced, in respect to physiochemical properties, in subsurface irrigation return flow in response to irrigation methods. θ-based irrigation treatments reduced irrigation volume applied by 49% and 77% compared to the control leading to a reduction in the volume of surface irrigation return flow by 71% and 92%. The θ-based treatments reduced the total surface and subsurface volume of irrigation return flow by 52% and 78% versus the control. In most cases, pesticides movement in surface irrigation return flow exhibited a linear or quadratic decrease for the control, while pesticide movement via subsurface irrigation return flow was related more to physiochemical properties limiting mobility rather than irrigation return flow volume or irrigation practice. This study demonstrates pesticide movement in irrigation return flow can be substantially reduced by selecting pesticides with low solubility/high adsorption coefficients whenever possible, and reducing the volume/application of irrigation to non-target areas.

Suggested Citation

  • Abdi, Damon E. & Owen, James S. & Wilson, P. Christopher & Hinz, Francisca O. & Cregg, Bert & Fernandez, R. Thomas, 2021. "Reducing pesticide transport in surface and subsurface irrigation return flow in specialty crop production," Agricultural Water Management, Elsevier, vol. 256(C).
  • Handle: RePEc:eee:agiwat:v:256:y:2021:i:c:s0378377421004005
    DOI: 10.1016/j.agwat.2021.107124
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377421004005
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2021.107124?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Incrocci, Luca & Marzialetti, Paolo & Incrocci, Giorgio & Di Vita, Andrea & Balendonck, Jos & Bibbiani, Carlo & Spagnol, Serafino & Pardossi, Alberto, 2019. "Sensor-based management of container nursery crops irrigated with fresh or saline water," Agricultural Water Management, Elsevier, vol. 213(C), pages 49-61.
    2. Davies, Michael J. & Harrison-Murray, Richard & Atkinson, Christopher J. & Grant, Olga M., 2016. "Application of deficit irrigation to container-grown hardy ornamental nursery stock via overhead irrigation, compared to drip irrigation," Agricultural Water Management, Elsevier, vol. 163(C), pages 244-254.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sebastián Bañón & Jesús Ochoa & Daniel Bañón & María Fernanda Ortuño & María Jesús Sánchez-Blanco, 2020. "Assessment of the Combined Effect of Temperature and Salinity on the Outputs of Soil Dielectric Sensors in Coconut Fiber," Sustainability, MDPI, vol. 12(16), pages 1-14, August.
    2. Del Castillo Múnera, Johanna & Belayneh, Bruk & Ritsvey, Andrew & Koivunen, Emmi E. & Lea-Cox, John & Swett, Cassandra L., 2019. "Enabling adaptation to water scarcity: Identifying and managing root disease risks associated with reducing irrigation inputs in greenhouse crop production – A case study in poinsettia," Agricultural Water Management, Elsevier, vol. 226(C).
    3. Silvia Traversari & Sonia Cacini & Angelica Galieni & Beatrice Nesi & Nicola Nicastro & Catello Pane, 2021. "Precision Agriculture Digital Technologies for Sustainable Fungal Disease Management of Ornamental Plants," Sustainability, MDPI, vol. 13(7), pages 1-22, March.
    4. Incrocci, Luca & Thompson, Rodney B. & Fernandez-Fernandez, María Dolores & De Pascale, Stefania & Pardossi, Alberto & Stanghellini, Cecilia & Rouphael, Youssef & Gallardo, Marisa, 2020. "Irrigation management of European greenhouse vegetable crops," Agricultural Water Management, Elsevier, vol. 242(C).
    5. Antonio Ruiz-Canales & Manuel Ferrández-Villena García, 2021. "Sustainable Applications in Agriculture," Sustainability, MDPI, vol. 13(8), pages 1-5, April.
    6. Santos, Lucas C. & Coelho, Rubens D. & Barbosa, Fernando S. & Leal, Daniel P.V. & Fraga Júnior, Eusímio F. & Barros, Timóteo H.S. & Lizcano, Jonathan V. & Ribeiro, Nathália L., 2019. "Influence of deficit irrigation on accumulation and partitioning of sugarcane biomass under drip irrigation in commercial varieties," Agricultural Water Management, Elsevier, vol. 221(C), pages 322-333.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:256:y:2021:i:c:s0378377421004005. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.