IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v216y2019icp473-483.html
   My bibliography  Save this article

Functional analysis of the taproot and fibrous roots of Medicago truncatula: Sucrose and proline catabolism primary response to water deficit

Author

Listed:
  • Castañeda, Veronica
  • de la Peña, Marlon
  • Azcárate, Lidia
  • Aranjuelo, Iker
  • Gonzalez, Esther M.

Abstract

Root performance represents a target factor conditioning plant development under drought conditions. Moreover, recent root phenotyping studies remark relevant differences on functionality of the different root types. However, despite its relevance, the performance of different types of roots such as primary/taproot (tapR) and lateral/fibrous roots (fibR) under water stress conditions is largely unknown. In the current study, the impact of water stress on target C and N metabolism (namely sucrose and proline) processes were characterized in tapR and fibR of Medicago truncatula plants exposed to different water stress severity regimes (moderate versus severe). While both root types exhibit some common responses to face water stress, the study highlighted important physiological and metabolic differences between them. The tapR proved to have an essential role on carbon and nitrogen partitioning rather than just on storage. Moreover, this root type showed a higher resilience towards water deficit stress. Sucrose metabolization at sucrose synthase level was early blocked in this tissue together with a selective accumulation of some amino acids such as proline and branched chain amino acids, which may act as alternative carbon sources under water deficit stress conditions. The decline in respiration, despite the over-accumulation of carbon compounds, suggests a modulation at sucrose cleavage level by sucrose synthase and invertase. These data not only provide new information on the carbon and nitrogen metabolism modulation upon water deficit stress but also on the different role, physiology, and metabolism of the taproot and fibrous roots. In addition, obtained results highlight the fact that both root types show distinct performance under water deficit stress; this factor can be of great relevance to improve breeding programs for increasing root efficiency under adverse conditions.

Suggested Citation

  • Castañeda, Veronica & de la Peña, Marlon & Azcárate, Lidia & Aranjuelo, Iker & Gonzalez, Esther M., 2019. "Functional analysis of the taproot and fibrous roots of Medicago truncatula: Sucrose and proline catabolism primary response to water deficit," Agricultural Water Management, Elsevier, vol. 216(C), pages 473-483.
  • Handle: RePEc:eee:agiwat:v:216:y:2019:i:c:p:473-483
    DOI: 10.1016/j.agwat.2018.07.018
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377418310643
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2018.07.018?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Virginia Gewin, 2010. "Food: An underground revolution," Nature, Nature, vol. 466(7306), pages 552-553, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ni-Hao Jiang & Shi-Han Zhang, 2021. "Effects of Combined Application of Potassium Silicate and Salicylic Acid on the Defense Response of Hydroponically Grown Tomato Plants to Ralstonia solanacearum Infection," Sustainability, MDPI, vol. 13(7), pages 1-23, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. P.K. Srivastava & M. Gupta & A. Pandey & V. Pandey & N. Singh & S.K. Tewari, 2014. "Effects of sodicity induced changes in soil physical properties on paddy root growth," Plant, Soil and Environment, Czech Academy of Agricultural Sciences, vol. 60(4), pages 165-169.
    2. Tron, Stefania & Bodner, Gernot & Laio, Francesco & Ridolfi, Luca & Leitner, Daniel, 2015. "Can diversity in root architecture explain plant water use efficiency? A modeling study," Ecological Modelling, Elsevier, vol. 312(C), pages 200-210.
    3. Laura Myrtiá Faní Stratópoulos & Chi Zhang & Karl-Heinz Häberle & Stephan Pauleit & Swantje Duthweiler & Hans Pretzsch & Thomas Rötzer, 2019. "Effects of Drought on the Phenology, Growth, and Morphological Development of Three Urban Tree Species and Cultivars," Sustainability, MDPI, vol. 11(18), pages 1-15, September.
    4. Opazo, Ismael & Toro, Guillermo & Salvatierra, Ariel & Pastenes, Claudio & Pimentel, Paula, 2020. "Rootstocks modulate the physiology and growth responses to water deficit and long-term recovery in grafted stone fruit trees," Agricultural Water Management, Elsevier, vol. 228(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:216:y:2019:i:c:p:473-483. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.