IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v213y2019icp1016-1027.html
   My bibliography  Save this article

Development of a steady-state model to predict daily water table depth and root zone soil matric potential of a cranberry field with a subirrigation system

Author

Listed:
  • Bigah, Yao
  • Rousseau, Alain N.
  • Gumiere, Silvio José

Abstract

Maintaining a steady water table depth (WTD) to ensure an optimal soil matric potential in the root zone (RMAP) is vital when growing cranberry under a subirrigation system; owing to losses and other hydrological processes. The excessive rising or falling of the WTD may threaten the plant transpiration either by saturation or lack of moisture in the root soil. A steady-state model was developed for a uniform soil column to predict WTD and RMAP under different weather conditions. The model is based on van Genuchten (VG) and Brooks and Corey (BC) analytical soil water retention functions coupled with Mualem, Brooks and Corey, and Gardner hydraulic conductivity models. The results show that the model is capable of predicting satisfactorily both WTD and RMAP. The VG model performed with a 78.13% accuracy for the WTD and an 88.59% precision according to the Kling Gupta Efficiency coefficient (r2 = 0.90, β = 1.00, and γ = 0.99) for the field storage. Meanwhile for the RMAP the Mualem and Gardner hydraulic conductivity models, predictions were successful 71.87% and 75.00% of the time, respectively. The BC model had a 78.13% success for the WTD, 86.93% accuracy in estimating the field water storage according to Kling-Gupta efficiency coefficient (r2 = 0.89, β = 1.00, and γ = 1.00) and the BC and Gardner hydraulic conductivity models had 65.63% and 71.88% success, respectively. A sensitivity analysis of the model, by means of the Morris method, reveals that for both models, the lower boundary condition impacts significantly both variables which are, however, less affected by the field capacity and the residual soil moisture content. The lower boundary condition interacts with the slope of the soil water retention functions, the height of the capillary fringe, the saturated conductivity, and the saturation moisture content which have non-linear effects. An uncertainty analysis shows that both variables for both models are normally distributed.

Suggested Citation

  • Bigah, Yao & Rousseau, Alain N. & Gumiere, Silvio José, 2019. "Development of a steady-state model to predict daily water table depth and root zone soil matric potential of a cranberry field with a subirrigation system," Agricultural Water Management, Elsevier, vol. 213(C), pages 1016-1027.
  • Handle: RePEc:eee:agiwat:v:213:y:2019:i:c:p:1016-1027
    DOI: 10.1016/j.agwat.2018.12.024
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377418310138
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2018.12.024?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Brédy, Jhemson & Gallichand, Jacques & Celicourt, Paul & Gumiere, Silvio José, 2020. "Water table depth forecasting in cranberry fields using two decision-tree-modeling approaches," Agricultural Water Management, Elsevier, vol. 233(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:213:y:2019:i:c:p:1016-1027. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.