IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v211y2019icp132-141.html
   My bibliography  Save this article

Effects of maize residue return rate on nitrogen transformations and gaseous losses in an arable soil

Author

Listed:
  • Li, Jie
  • Yang, Hong
  • Zhou, Feng
  • Zhang, Xiaochen
  • Luo, Jiafa
  • Li, Yan
  • Lindsey, Stuart
  • Shi, Yuanliang
  • He, Hongbo
  • Zhang, Xudong

Abstract

Residue return in combination with synthetic nitrogen (N) fertilizer is increasingly being considered to be beneficial to soil fertility and crop yield. In most studies, however, attention has mainly been paid to the way that significant changes in the soil N mineralization process affect the soil N cycle, while the effect of different residue return amounts on ammonia (NH3) volatilization and nitrous oxide (N2O) emissions, potentially the most important components of N losses and environmental effects has, to a certain extent, been neglected, notably in north-eastern China. Therefore, a trial was set up in an Alfisol/arable soil during 2015–2016 to monitor annual NH3 volatilization and N2O emission dynamics from a fertilized maize field with residue return at different rates. Treatments included N fertilizer alone and N fertilizer in combination with either half or the full yield of the maize residue (5.8 × 103 or 11.6 × 103 kg ha−1, respectively) returned to the soil surface after harvest.

Suggested Citation

  • Li, Jie & Yang, Hong & Zhou, Feng & Zhang, Xiaochen & Luo, Jiafa & Li, Yan & Lindsey, Stuart & Shi, Yuanliang & He, Hongbo & Zhang, Xudong, 2019. "Effects of maize residue return rate on nitrogen transformations and gaseous losses in an arable soil," Agricultural Water Management, Elsevier, vol. 211(C), pages 132-141.
  • Handle: RePEc:eee:agiwat:v:211:y:2019:i:c:p:132-141
    DOI: 10.1016/j.agwat.2018.09.049
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377418309685
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2018.09.049?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chen, Lina & Zhao, Zilong & Li, Jiang & Wang, Haiming & Guo, Guomian & Wu, Wenbo, 2022. "Effects of muddy water irrigation with different sediment particle sizes and sediment concentrations on soil microbial communities in the Yellow River Basin of China," Agricultural Water Management, Elsevier, vol. 270(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:211:y:2019:i:c:p:132-141. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.