IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v210y2018icp198-207.html
   My bibliography  Save this article

A tree-bordered field as a surrogate for agroforestry in temperate regions: Where does the water go?

Author

Listed:
  • Coussement, Tom
  • Maloteau, Sophie
  • Pardon, Paul
  • Artru, Sidonie
  • Ridley, Simon
  • Javaux, Mathieu
  • Garré, Sarah

Abstract

There is a renewed interest in temperate agroforestry systems because of their potential to increase biodiversity, sequester carbon and diversify the landscape while maintaining productivity. Little quantitative information is available about the interaction between trees and the crop for water, especially in temperate climate and for tree ages towards the end of an agroforestry cycle. With this study, we quantified the effect of mature poplar trees on soil moisture dynamics in space and time in an agricultural field sown with maize during one growing season. We confirmed the ability of electrical resistivity tomography to study tree-crop interactions for water under field conditions and we delimited an area of influence of the 40-year old trees on the crop of about 15 m. In order to do this, we installed four 30 m electrode transects perpendicular to the field border. Three transects were located next to a tree-bordered part of the field and one reference transect was located along the same border, but without any tree present. We performed seven electrical resistivity tomography (ERT) measurements during the maize growing season and compared the soil moisture distribution and dynamics with and without tree border as a proxy for a mature agroforestry system. We showed that the ERT tomograms in a tree-bordered zone are significantly different from a reference zone without trees along the 30 m of the transect using a single and segmented linear regression analysis. This article shows the potential of ERT to quantify tree-crop-soil interactions for water in agroforestry systems.

Suggested Citation

  • Coussement, Tom & Maloteau, Sophie & Pardon, Paul & Artru, Sidonie & Ridley, Simon & Javaux, Mathieu & Garré, Sarah, 2018. "A tree-bordered field as a surrogate for agroforestry in temperate regions: Where does the water go?," Agricultural Water Management, Elsevier, vol. 210(C), pages 198-207.
  • Handle: RePEc:eee:agiwat:v:210:y:2018:i:c:p:198-207
    DOI: 10.1016/j.agwat.2018.06.033
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377418309053
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2018.06.033?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ain-Lhout, F. & Boutaleb, S. & Diaz-Barradas, M.C. & Jauregui, J. & Zunzunegui, M., 2016. "Monitoring the evolution of soil moisture in root zone system of Argania spinosa using electrical resistivity imaging," Agricultural Water Management, Elsevier, vol. 164(P1), pages 158-166.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pardon, P. & Reubens, B. & Mertens, J. & Verheyen, K. & De Frenne, P. & De Smet, G. & Van Waes, C. & Reheul, D., 2018. "Effects of temperate agroforestry on yield and quality of different arable intercrops," Agricultural Systems, Elsevier, vol. 166(C), pages 135-151.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Martínez, Gonzalo & Laguna, Ana M. & Giráldez, Juan Vicente & Vanderlinden, Karl, 2021. "Concurrent variability of soil moisture and apparent electrical conductivity in the proximity of olive trees," Agricultural Water Management, Elsevier, vol. 245(C).
    2. Junwei Liu & Vinay Kumar Gadi & Ankit Garg & Suriya Prakash Ganesan & Anasua GuhaRay, 2019. "A Novel Approach to Interpret Soil Moisture Content for Economical Monitoring of Urban Landscape," Sustainability, MDPI, vol. 11(20), pages 1-17, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:210:y:2018:i:c:p:198-207. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.