IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v204y2018icp271-280.html
   My bibliography  Save this article

Making sense of cosmic-ray soil moisture measurements and eddy covariance data with regard to crop water use and field water balance

Author

Listed:
  • Wang, Enli
  • Smith, Chris J.
  • Macdonald, Ben C.T.
  • Hunt, James R.
  • Xing, Hongtao
  • Denmead, O.T.
  • Zeglin, Steve
  • Zhao, Zhigan
  • Isaac, Peter

Abstract

Changes in soil moisture influence the water availability to crop plants and soil ecological processes like carbon and nutrient cycling, impacting on crop productivity and environmental performance (greenhouse gas emissions, leaching) of agricultural systems. While traditional soil moisture measurements are done using point-based methods, the recent development of the cosmic-ray soil moisture neutron sensor (CRNS) offers the opportunity to measure soil water at the field scale. However, due to its shallow (<300 mm) and variable measurement depth, the relevance of the measurements to crop water use has been questioned. In this paper, we combine point-based soil moisture measurements (soil cores, TDR), areal-based soil moisture and evapotranspiration measurements (CRNS, eddy covariance), and soil-plant systems modelling together to investigate the consistency in measured soil moisture and crop water use with these different methods We also quantify how relevant the CRNS soil moisture measurements are in understanding the water use of cereal crops (wheat and barley). Our results show that crop water uptake from CRNS layers accounted for 50–90% of the total water uptake in dry environments (location, year) with annual rainfall <300 mm, but only 30–50% of the total crop water uptake in wetter environments (locations, years). This demonstrates a higher relevance of CRNS measurements in semi-arid and arid regions where water is a limiting factor for crop growth and other ecological processes. The high temporal resolution of soil moisture data from CRNS can be assimilated with eddy covariance measurements and point measurements in field to better calibrate soil-plant models and to more accurately simulate field water balance.

Suggested Citation

  • Wang, Enli & Smith, Chris J. & Macdonald, Ben C.T. & Hunt, James R. & Xing, Hongtao & Denmead, O.T. & Zeglin, Steve & Zhao, Zhigan & Isaac, Peter, 2018. "Making sense of cosmic-ray soil moisture measurements and eddy covariance data with regard to crop water use and field water balance," Agricultural Water Management, Elsevier, vol. 204(C), pages 271-280.
  • Handle: RePEc:eee:agiwat:v:204:y:2018:i:c:p:271-280
    DOI: 10.1016/j.agwat.2018.04.017
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377418303871
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2018.04.017?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. McVicar, Tim R. & Rui, Li & Walker, Joe & Fitzpatrick, Rob W. & Changming, Liu (ed.), 2002. "Regional Water and Soil Assessment for Managing Sustainable Agriculture in China and Australia," Monographs, Australian Centre for International Agricultural Research, number 114792.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Xuezhang & Xu, Xianli & Wang, Kelin & Li, Xiaohan, 2023. "Estimation of root zone soil moisture at point scale based on soil water measurements from cosmic-ray neutron sensing in a karst catchment," Agricultural Water Management, Elsevier, vol. 289(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Xuehong & Bennett, Jeff & Xie, Chen & Zhang, Zhitao & Liang, Dan, 2007. "Estimating non-market environmental benefits of the Conversion of Cropland to Forest and Grassland Program: A choice modeling approach," Ecological Economics, Elsevier, vol. 63(1), pages 114-125, June.
    2. Zhen, Lin & Cao, Shuyan & Cheng, Shengkui & Xie, Gaodi & Wei, Yunjie & Liu, Xuelin & Li, Fen, 2010. "Arable land requirements based on food consumption patterns: Case study in rural Guyuan District, Western China," Ecological Economics, Elsevier, vol. 69(7), pages 1443-1453, May.
    3. Gao, Xiaoyu & Huo, Zailin & Xu, Xu & Qu, Zhongyi & Huang, Guanhua & Tang, Pengcheng & Bai, Yining, 2018. "Shallow groundwater plays an important role in enhancing irrigation water productivity in an arid area: The perspective from a regional agricultural hydrology simulation," Agricultural Water Management, Elsevier, vol. 208(C), pages 43-58.
    4. Mueller, Lothar & Behrendt, Axel & Schalitz, Gisbert & Schindler, Uwe, 2005. "Above ground biomass and water use efficiency of crops at shallow water tables in a temperate climate," Agricultural Water Management, Elsevier, vol. 75(2), pages 117-136, July.
    5. Pascual, Miquel & Villar, Josep M. & Rufat, Josep, 2016. "Water use efficiency in peach trees over a four-years experiment on the effects of irrigation and nitrogen application," Agricultural Water Management, Elsevier, vol. 164(P2), pages 253-266.
    6. Mishra, Mukunda & Chatterjee, Soumendu, 2018. "Application of Analytical Hierarchy Process (AHP) algorithm to income insecurity susceptibility mapping – A study in the district of Purulia, India," Socio-Economic Planning Sciences, Elsevier, vol. 62(C), pages 56-74.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:204:y:2018:i:c:p:271-280. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.