Simulating crop yield, surface runoff, tile drainage and phosphorus loss in a clay loam soil of the Lake Erie region using EPIC
Author
Abstract
Suggested Citation
DOI: 10.1016/j.agwat.2018.04.021
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Stockle, Claudio O. & Williams, Jimmy R. & Rosenberg, Norman J. & Jones, C. Allan, 1992. "A method for estimating the direct and climatic effects of rising atmospheric carbon dioxide on growth and yield of crops: Part I--Modification of the EPIC model for climate change analysis," Agricultural Systems, Elsevier, vol. 38(3), pages 225-238.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Lychuk, Taras E. & Moulin, Alan P. & Lemke, Reynald L. & Izaurralde, Roberto C. & Johnson, Eric N. & Olfert, Owen O. & Brandt, Stewart A., 2021. "Modelling the effects of climate change, agricultural inputs, cropping diversity, and environment on soil nitrogen and phosphorus: A case study in Saskatchewan, Canada," Agricultural Water Management, Elsevier, vol. 252(C).
- Jorge A. Garcia & Angelos Alamanos, 2022. "Integrated modelling approaches for sustainable agri-economic growth and environmental improvement: Examples from Canada, Greece, and Ireland," Papers 2208.09087, arXiv.org.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Marcinkowski, Paweł & Piniewski, Mikołaj, 2024. "Future changes in crop yield over Poland driven by climate change, increasing atmospheric CO2 and nitrogen stress," Agricultural Systems, Elsevier, vol. 213(C).
- Mitter, Hermine & Schmid, Erwin, 2019. "Computing the economic value of climate information for water stress management exemplified by crop production in Austria," Agricultural Water Management, Elsevier, vol. 221(C), pages 430-448.
- Cabelguenne, M. & Debaeke, P. & Bouniols, A., 1999. "EPICphase, a version of the EPIC model simulating the effects of water and nitrogen stress on biomass and yield, taking account of developmental stages: validation on maize, sunflower, sorghum, soybea," Agricultural Systems, Elsevier, vol. 60(3), pages 175-196, June.
- Mitter, Hermine & Schmid, Erwin, 2021. "Informing groundwater policies in semi-arid agricultural production regions under stochastic climate scenario impacts," Ecological Economics, Elsevier, vol. 180(C).
- Wolf, Joost & Kanellopoulos, Argyris & Kros, Johannes & Webber, Heidi & Zhao, Gang & Britz, Wolfgang & Reinds, Gert Jan & Ewert, Frank & de Vries, Wim, 2015. "Combined analysis of climate, technological and price changes on future arable farming systems in Europe," Agricultural Systems, Elsevier, vol. 140(C), pages 56-73.
- Bocchiola, D. & Brunetti, L. & Soncini, A. & Polinelli, F. & Gianinetto, M., 2019. "Impact of climate change on agricultural productivity and food security in the Himalayas: A case study in Nepal," Agricultural Systems, Elsevier, vol. 171(C), pages 113-125.
- Wang, Zhiqiang & Ye, Li & Jiang, Jingyi & Fan, Yida & Zhang, Xiaoran, 2022. "Review of application of EPIC crop growth model," Ecological Modelling, Elsevier, vol. 467(C).
- Koffi M. Adji & Aklesso Y. G. Egbendewe & Boris O. K. Lokonon, 2022. "Potential impacts of sustainable agricultural practices on smallholders' behavior in developing countries: Evidence from Togo," Natural Resources Forum, Blackwell Publishing, vol. 46(1), pages 73-87, February.
- Melkonian, J. & Riha, S. J. & Wilks, D. S., 1998. "Simulation of elevated CO2 effects on daily net canopy carbon assimilation and crop yield," Agricultural Systems, Elsevier, vol. 58(1), pages 87-106, September.
- Bhattarai, Mukesh Dev & Secchi, Silvia & Schoof, Justin, 2017. "Projecting corn and soybeans yields under climate change in a Corn Belt watershed," Agricultural Systems, Elsevier, vol. 152(C), pages 90-99.
- Lee, Jeffrey J. & Phillips, Donald L. & Dodson, Rusty F., 1996. "Sensitivity of the US corn belt to climate change and elevated CO2: II. Soil erosion and organic carbon," Agricultural Systems, Elsevier, vol. 52(4), pages 503-521, December.
- Juraj Balkovič & Erwin Schmid & Rastislav Skalský & Martina Nováková, 2011. "Modelling soil organic carbon changes on arable land under climate change - a case study analysis of the Kočín farm in Slovakia," Soil and Water Research, Czech Academy of Agricultural Sciences, vol. 6(1), pages 30-42.
- Taras Lychuk & Roberto Izaurralde & Robert Hill & William McGill & Jimmy Williams, 2015. "Biochar as a global change adaptation: predicting biochar impacts on crop productivity and soil quality for a tropical soil with the Environmental Policy Integrated Climate (EPIC) model," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 20(8), pages 1437-1458, December.
- Qi, Zhi & Gao, Ya & Sun, Chen & Ramos, Tiago B. & Mu, Danning & Xun, Yihao & Huang, Guanhua & Xu, Xu, 2024. "Assessing water-nitrogen use, crop growth and economic benefits for maize in upper Yellow River basin: Feasibility analysis for border and drip irrigation," Agricultural Water Management, Elsevier, vol. 295(C).
- Lekarkar, Katoria & Nkwasa, Albert & Villani, Lorenzo & van Griensven, Ann, 2024. "Localizing agricultural impacts of 21st century climate pathways in data scarce catchments: A case study of the Nyando catchment, Kenya," Agricultural Water Management, Elsevier, vol. 294(C).
- Wang, Zhaozhi & Zhang, T.Q. & Tan, C.S. & Xue, Lulin & Bukovsky, Melissa & Qi, Z.M., 2021. "Modeling impacts of climate change on crop yield and phosphorus loss in a subsurface drained field of Lake Erie region, Canada," Agricultural Systems, Elsevier, vol. 190(C).
- Phillips, Donald L. & Lee, Jeffrey J. & Dodson, Rusty F., 1996. "Sensitivity of the US corn belt to climate change and elevated CO2: I. Corn and soybean yields," Agricultural Systems, Elsevier, vol. 52(4), pages 481-502, December.
- Bocchiola, D., 2015. "Impact of potential climate change on crop yield and water footprint of rice in the Po valley of Italy," Agricultural Systems, Elsevier, vol. 139(C), pages 223-237.
- Topp, Cairistiona F. E. & Doyle, Christopher J., 1996. "Simulating the impact of global warming on milk and forage production in Scotland: 1. The effects on dry-matter yield of grass and grass-white clover swards," Agricultural Systems, Elsevier, vol. 52(2-3), pages 213-242.
- Xu, Xu & Huang, Guanhua & Sun, Chen & Pereira, Luis S. & Ramos, Tiago B. & Huang, Quanzhong & Hao, Yuanyuan, 2013. "Assessing the effects of water table depth on water use, soil salinity and wheat yield: Searching for a target depth for irrigated areas in the upper Yellow River basin," Agricultural Water Management, Elsevier, vol. 125(C), pages 46-60.
More about this item
Keywords
Modelling; Surface runoff; Tile drainage; Phosphorus loss; EPIC; Lake Erie;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:204:y:2018:i:c:p:212-221. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.