IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v191y2017icp173-183.html
   My bibliography  Save this article

Design of concave and convex paired sloped drip laterals

Author

Listed:
  • Baiamonte, Giorgio

Abstract

Properly designed microirrigation plants allow water use efficiency to be optimized and quite high values of emission uniformity to be obtained in the field. Disposing paired laterals so that two distribution pipes extend in opposite directions from a common manifold contributes to provide more uniform pressure to all laterals in thesystem. Towards this end, an analytical procedure to optimize the uniform pressure when designing paired drip laterals on uniform slopes has recently been proposed, based on the assumption that the variations of the emitters’ flow rate along the lateral and the local losses due to the emitters’ insertions could be neglected. More recently, an easy method to fix the best position of the manifold (BMP) equal to 24% of the optimal lateral length was introduced. The mentioned procedures are valid under the assumption that the paired laterals are laid on straight slopes; however, real microirrigation units rarely follow an even gradient, whose topography is characterized by equally spaced contour lines. The objective of this study was to extend the analytical procedure to optimally design paired sloped drip laterals to the case in which the shape of the field is concave or convex. Results showed that the position where the minimum occurs in the downhill laterals and the optimal pressure head distribution lines vary with the shape of the drip lateral and that the easy method to fix the BMP=24% cannot be applied for paired sloped laterals laid on complex topography. Accordingly, a BMP relationship as a function of the curvature parameter of the lateral profile is proposed. Moreover, it is demonstrated that the optimal length of the paired lateral has achieved its minimum value, for a particular concave shape, at what corresponds to a paired lateral length 6.6% lower than that for straight paired laterals. By varying the curvature parameter, and for an inside diameter value equal to 17.6mm, some practical solutions are presented. The proposed procedure was successfully compared with that derived by the step-by-step exact procedure.

Suggested Citation

  • Baiamonte, Giorgio, 2017. "Design of concave and convex paired sloped drip laterals," Agricultural Water Management, Elsevier, vol. 191(C), pages 173-183.
  • Handle: RePEc:eee:agiwat:v:191:y:2017:i:c:p:173-183
    DOI: 10.1016/j.agwat.2017.06.015
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377417302147
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2017.06.015?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wu, I-Pai, 1997. "An assessment of hydraulic design of micro-irrigation systems," Agricultural Water Management, Elsevier, vol. 32(3), pages 275-284, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Baiamonte, Giorgio, 2018. "Advances in designing drip irrigation laterals," Agricultural Water Management, Elsevier, vol. 199(C), pages 157-174.
    2. Muhammad Rashid & Saif Haider & Muhammad Umer Masood & Chaitanya B. Pande & Abebe Debele Tolche & Fahad Alshehri & Romulus Costache & Ismail Elkhrachy, 2023. "Sustainable Water Management for Small Farmers with Center-Pivot Irrigation: A Hydraulic and Structural Design Perspective," Sustainability, MDPI, vol. 15(23), pages 1-29, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Patel, Neelam & Rajput, T.B.S., 2007. "Effect of drip tape placement depth and irrigation level on yield of potato," Agricultural Water Management, Elsevier, vol. 88(1-3), pages 209-223, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:191:y:2017:i:c:p:173-183. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.