IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v143y2014icp38-47.html
   My bibliography  Save this article

Modification of water movement equations in the PRZM3 for simulating pesticides in soil profile

Author

Listed:
  • Noshadi, Masoud
  • Jamshidi, Sajad

Abstract

In the area of simulating pesticide transportation in soil profile, the majority of models adhere to simplification techniques and due to this, the simulation achieved does not reflect the reality. One such commonly used model in this regard is PRZM3. In the present research, to ensure improved results, in addition to a general software update, modified equations concerning water movement in soil were applied. To achieve this, one of the most exact numerical solutions (MC-Cormack method) was selected for solving water movement equation (Richard's equation). This equation was then rewritten in the form of mobile-immobile (MIM), and the Shuffled Complex Evaluation (SCE) method for calculating mobile-immobile coefficients was also added to the model. Following model modification, this was used to simulate 2,4-D concentration, and the results were then compared with the results of the main model and measured data (Noshadi et al., 2011) in two different treatments (normal irrigation and deficit irrigation). Considering the statistics, in the normal irrigation treatment for PRZM3, the figure for NRMSE (normalized root mean square error), CRM (coefficient of residual mass) and d (index of agreement) accounted for 0.58, 0.78 and −0.47, respectively while the figures reported in the modified model using MC-Cormack method (PRZM3-MC) were 0.79, 0.28 and −0.04, and in the modified model using MIM form (PRZM3-MC-MIM) they were 0.86, 0.23 and −0.06. Regarding deficit irrigation treatment, for PRZM3, the figure for NRMSE, CRM and d accounted for 0.65, 0.52 and 0.08, respectively while the figures reported in the modified model using PRZM3-MC were 0.77, 0.38 and −0.24 and in PRZM3-MC-MIM they were 0.73, 0.36 and −0.24, respectively. Simulation results reveal that compared to PRZM3, results were more accurate after model modification using PRZM3-MC and PRZM3-MC-MIM.

Suggested Citation

  • Noshadi, Masoud & Jamshidi, Sajad, 2014. "Modification of water movement equations in the PRZM3 for simulating pesticides in soil profile," Agricultural Water Management, Elsevier, vol. 143(C), pages 38-47.
  • Handle: RePEc:eee:agiwat:v:143:y:2014:i:c:p:38-47
    DOI: 10.1016/j.agwat.2014.04.011
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S037837741400122X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2014.04.011?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kandelous, Maziar M. & Simunek, Jirí, 2010. "Numerical simulations of water movement in a subsurface drip irrigation system under field and laboratory conditions using HYDRUS-2D," Agricultural Water Management, Elsevier, vol. 97(7), pages 1070-1076, July.
    2. Zand-Parsa, Sh. & Sepaskhah, A.R. & Ronaghi, A., 2006. "Development and evaluation of integrated water and nitrogen model for maize," Agricultural Water Management, Elsevier, vol. 81(3), pages 227-256, March.
    3. Jarvis, N. J. & Brown, C. D. & Granitza, E., 2000. "Sources of error in model predictions of pesticide leaching: a case study using the MACRO model," Agricultural Water Management, Elsevier, vol. 44(1-3), pages 247-262, May.
    4. Trevisan, M. & Errera, G. & Goerlitz, G. & Remy, B. & Sweeney, P., 2000. "Modelling ethoprophos and bentazone fate in a sandy humic soil with primary pesticide fate model PRZM-2," Agricultural Water Management, Elsevier, vol. 44(1-3), pages 317-335, May.
    5. Bonfante, A. & Basile, A. & Acutis, M. & De Mascellis, R. & Manna, P. & Perego, A. & Terribile, F., 2010. "SWAP, CropSyst and MACRO comparison in two contrasting soils cropped with maize in Northern Italy," Agricultural Water Management, Elsevier, vol. 97(7), pages 1051-1062, July.
    6. Moriasi, Daniel N. & Gowda, Prasanna H. & Arnold, Jeffrey G. & Mulla, David J. & Ale, Srinivasulu & Steiner, Jean L., 2013. "Modeling the impact of nitrogen fertilizer application and tile drain configuration on nitrate leaching using SWAT," Agricultural Water Management, Elsevier, vol. 130(C), pages 36-43.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xue, Jingyuan & Na, Qin & Zhang, Xuyang & Grieneisen, Michael L. & Lai, Quan & Zhang, Minghua, 2023. "CalBMP, a web-based modeling tool for evaluating pesticide offsite movement and best management practice scenarios in California agricultural land," Agricultural Water Management, Elsevier, vol. 277(C).
    2. Jafari, Mohammad & Kamali, Hamidreza & Keshavarz, Ali & Momeni, Akbar, 2021. "Estimation of evapotranspiration and crop coefficient of drip-irrigated orange trees under a semi-arid climate," Agricultural Water Management, Elsevier, vol. 248(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Yunfeng & Yu, Qihua & Ning, Huifeng & Gao, Yang & Sun, Jingsheng, 2023. "Simulation of soil water, heat, and salt adsorptive transport under film mulched drip irrigation in an arid saline-alkali area using HYDRUS-2D," Agricultural Water Management, Elsevier, vol. 290(C).
    2. Bonfante, A. & Monaco, E. & Manna, P. & De Mascellis, R. & Basile, A. & Buonanno, M. & Cantilena, G. & Esposito, A. & Tedeschi, A. & De Michele, C. & Belfiore, O. & Catapano, I. & Ludeno, G. & Salinas, 2019. "LCIS DSS—An irrigation supporting system for water use efficiency improvement in precision agriculture: A maize case study," Agricultural Systems, Elsevier, vol. 176(C).
    3. Amin, M.G. Mostofa & Šimůnek, Jirka & Lægdsmand, Mette, 2014. "Simulation of the redistribution and fate of contaminants from soil-injected animal slurry," Agricultural Water Management, Elsevier, vol. 131(C), pages 17-29.
    4. Gottesburen, B. & Aden, K. & Barlund, I. & Brown, C. & Dust, M. & Gorlitz, G. & Jarvis, N. & Rekolainen, S. & Schafer, H., 2000. "Comparison of pesticide leaching models: results using the Weiherbach data set," Agricultural Water Management, Elsevier, vol. 44(1-3), pages 153-181, May.
    5. W. Yan & Y. Zhong & Z. Shangguan, 2015. "The relationships and sensibility of wheat C:N:P stoichiometry and water use efficiency under nitrogen fertilization," Plant, Soil and Environment, Czech Academy of Agricultural Sciences, vol. 61(5), pages 201-207.
    6. Zhao, Ying & Zhai, Xiafei & Wang, Zhaohui & Li, Huijie & Jiang, Rui & Lee Hill, Robert & Si, Bing & Hao, Feng, 2018. "Simulation of soil water and heat flow in ridge cultivation with plastic film mulching system on the Chinese Loess Plateau," Agricultural Water Management, Elsevier, vol. 202(C), pages 99-112.
    7. Pizarro, E. & Galleguillos, M. & Barría, P. & Callejas, R., 2022. "Irrigation management or climate change ? Which is more important to cope with water shortage in the production of table grape in a Mediterranean context," Agricultural Water Management, Elsevier, vol. 263(C).
    8. Karandish, Fatemeh & Šimůnek, Jiří, 2016. "A field-modeling study for assessing temporal variations of soil-water-crop interactions under water-saving irrigation strategies," Agricultural Water Management, Elsevier, vol. 178(C), pages 291-303.
    9. Sepaskhah, Ali Reza & Fahandezh-Saadi, Saghar & Zand-Parsa, Shahrokh, 2011. "Logistic model application for prediction of maize yield under water and nitrogen management," Agricultural Water Management, Elsevier, vol. 99(1), pages 51-57.
    10. Nie, Wei-Bo & Dong, Shu-Xin & Li, Yi-Bo & Ma, Xiao-Yi, 2021. "Optimization of the border size on the irrigation district scale – Example of the Hetao irrigation district," Agricultural Water Management, Elsevier, vol. 248(C).
    11. Stricevic, Ruzica & Cosic, Marija & Djurovic, Nevenka & Pejic, Borivoj & Maksimovic, Livija, 2011. "Assessment of the FAO AquaCrop model in the simulation of rainfed and supplementally irrigated maize, sugar beet and sunflower," Agricultural Water Management, Elsevier, vol. 98(10), pages 1615-1621, August.
    12. Vanclooster, M. & Boesten, J. J. T. I., 2000. "Application of pesticide simulation models to the Vredepeel dataset: I. Water, solute and heat transport," Agricultural Water Management, Elsevier, vol. 44(1-3), pages 105-117, May.
    13. Saefuddin, Reskiana & Saito, Hirotaka & Šimůnek, Jiří, 2019. "Experimental and numerical evaluation of a ring-shaped emitter for subsurface irrigation," Agricultural Water Management, Elsevier, vol. 211(C), pages 111-122.
    14. Jamei, Mehdi & Maroufpoor, Saman & Aminpour, Younes & Karbasi, Masoud & Malik, Anurag & Karimi, Bakhtiar, 2022. "Developing hybrid data-intelligent method using Boruta-random forest optimizer for simulation of nitrate distribution pattern," Agricultural Water Management, Elsevier, vol. 270(C).
    15. Zhang, Yan & Ma, Qian & Liu, Donghua & Sun, Lefeng & Ren, Xiaolong & Ali, Shahzad & Zhang, Peng & Jia, Zhikuan, 2018. "Effects of different fertilizer strategies on soil water utilization and maize yield in the ridge and furrow rainfall harvesting system in semiarid regions of China," Agricultural Water Management, Elsevier, vol. 208(C), pages 414-421.
    16. Kisi, Ozgur & Khosravinia, Payam & Heddam, Salim & Karimi, Bakhtiar & Karimi, Nazir, 2021. "Modeling wetting front redistribution of drip irrigation systems using a new machine learning method: Adaptive neuro- fuzzy system improved by hybrid particle swarm optimization – Gravity search algor," Agricultural Water Management, Elsevier, vol. 256(C).
    17. Fu, Qiang & Hou, Renjie & Li, Tianxiao & Li, Yue & Liu, Dong & Li, Mo, 2019. "A new infiltration model for simulating soil water movement in canal irrigation under laboratory conditions," Agricultural Water Management, Elsevier, vol. 213(C), pages 433-444.
    18. Arbat, G. & Roselló, A. & Domingo Olivé, F. & Puig-Bargués, J. & González Llinàs, E. & Duran-Ros, M. & Pujol, J. & Ramírez de Cartagena, F., 2013. "Soil water and nitrate distribution under drip irrigated corn receiving pig slurry," Agricultural Water Management, Elsevier, vol. 120(C), pages 11-22.
    19. Vanclooster, M. & Boesten, J. J. T. I. & Trevisan, M. & Brown, C. D. & Capri, E. & Eklo, O. M. & Gottesburen, B. & Gouy, V. & van der Linden, A. M. A., 2000. "A European test of pesticide-leaching models: methodology and major recommendations," Agricultural Water Management, Elsevier, vol. 44(1-3), pages 1-19, May.
    20. Baiamonte, Giorgio & Alagna, Vincenzo & Autovino, Dario & Iovino, Massimo & Palermo, Samuel & Vaccaro, Girolamo & Bagarello, Vincenzo, 2024. "Influence of soil hydraulic parameters on bulb size for surface and buried emitters," Agricultural Water Management, Elsevier, vol. 295(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:143:y:2014:i:c:p:38-47. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.