IDEAS home Printed from https://ideas.repec.org/a/eee/agisys/v173y2019icp491-503.html
   My bibliography  Save this article

A rapid, spatially explicit approach to describe cropping systems dynamics at the regional scale

Author

Listed:
  • Rizzo, Davide
  • Therond, Olivier
  • Lardy, Romain
  • Murgue, Clément
  • Leenhardt, Delphine

Abstract

Land managers need spatially explicit information about agricultural practices to address issues that arise from the use of natural resources in agriculture. One main characteristic of agriculture is its great variability in space and time. However, describing the spatial distribution of “cropping systems”, i.e. crop sequences and crop management systems at the regional scale, remains a major scientific challenge. This study presents a new, simple and rapid approach to model the spatial distribution of irrigation management practices. It was developed in two large watersheds in southwestern France (about 1500 and 3000 km2). Based on a previous study consisting of 27 farmer interviews in a study area about one-sixth the size of these watersheds, we interviewed 12 key informants who had an integrative vision of the study area and spent only one-fourth as much time collecting and processing the relevant data. One major innovation was to combine knowledge from generic databases and ad-hoc intermediate objects, such as diagrams, tables and maps, to interact with the key informants. These objects helped them focus on specific local information that we had missed and facilitated data processing. Interview results were used to spatially allocate cropping systems formalized as dynamic IF-THEN decision rules. We evaluated our approach by using a cropping system model to simulate irrigation withdrawals over a ten-year period. Its predictions reproduced well annual amounts and inter-annual dynamics of irrigation water withdrawals recorded by the regional Water Agency. This approach, combining diagrams with IF-THEN rules, appears easy to adapt to study other areas and agricultural practices besides irrigation, as well as to manage annual and perennial crops.

Suggested Citation

  • Rizzo, Davide & Therond, Olivier & Lardy, Romain & Murgue, Clément & Leenhardt, Delphine, 2019. "A rapid, spatially explicit approach to describe cropping systems dynamics at the regional scale," Agricultural Systems, Elsevier, vol. 173(C), pages 491-503.
  • Handle: RePEc:eee:agisys:v:173:y:2019:i:c:p:491-503
    DOI: 10.1016/j.agsy.2019.04.003
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0308521X18302774
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agsy.2019.04.003?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Aubry, C. & Papy, F. & Capillon, A., 1998. "Modelling decision-making processes for annual crop management," Agricultural Systems, Elsevier, vol. 56(1), pages 45-65, January.
    2. Biarnès, A. & Bailly, J.S. & Boissieux, Y., 2009. "Identifying indicators of the spatial variation of agricultural practices by a tree partitioning method: The case of weed control practices in a vine growing catchment," Agricultural Systems, Elsevier, vol. 99(2-3), pages 105-116, February.
    3. Deepak K. Ray & Navin Ramankutty & Nathaniel D. Mueller & Paul C. West & Jonathan A. Foley, 2012. "Recent patterns of crop yield growth and stagnation," Nature Communications, Nature, vol. 3(1), pages 1-7, January.
    4. Yunju, Li & Kahrl, Fredrich & Jianjun, Pan & Roland-Holst, David & Yufang, Su & Wilkes, Andreas & Jianchu, Xu, 2012. "Fertilizer use patterns in Yunnan Province, China: Implications for agricultural and environmental policy," Agricultural Systems, Elsevier, vol. 110(C), pages 78-89.
    5. J.-P. Deffontaines, 1973. "Analyse du paysage et étude régionale des systèmes de production agricole," Économie rurale, Programme National Persée, vol. 98(1), pages 3-13.
    6. Jakku, E. & Thorburn, P.J., 2010. "A conceptual framework for guiding the participatory development of agricultural decision support systems," Agricultural Systems, Elsevier, vol. 103(9), pages 675-682, November.
    7. Nesme, Thomas & Bellon, Stephane & Lescourret, Francoise & Senoussi, Rachid & Habib, Robert, 2005. "Are agronomic models useful for studying farmers' fertilisation practices?," Agricultural Systems, Elsevier, vol. 83(3), pages 297-314, March.
    8. Mace, Karen & Morlon, Pierre & Munier-Jolain, Nicolas & Quere, Lionel, 2007. "Time scales as a factor in decision-making by French farmers on weed management in annual crops," Agricultural Systems, Elsevier, vol. 93(1-3), pages 115-142, March.
    9. Lucie Clavel & Marie-Hélène Charron & Olivier Therond & Delphine Leenhardt, 2012. "A Modelling Solution for Developing and Evaluating Agricultural Land-Use Scenarios in Water Scarcity Contexts," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(9), pages 2625-2641, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bohan, David & Schmucki, Reto & Abay, Abrha & Termansen, Mette & Bane, Miranda & Charalabiis, Alice & Cong, Rong-Gang & Derocles, Stephane & Dorner, Zita & Forster, Matthieu & Gibert, Caroline & Harro, 2020. "Designing farmer-acceptable rotations that assure ecosystem service provision inthe face of climate change," MPRA Paper 112313, University Library of Munich, Germany.
    2. Mariem Baccar & Jacques-Eric Bergez & Stephane Couture & Muddu Sekhar & Laurent Ruiz & Delphine Leenhardt, 2021. "Building Climate Change Adaptation Scenarios with Stakeholders for Water Management: A Hybrid Approach Adapted to the South Indian Water Crisis," Sustainability, MDPI, vol. 13(15), pages 1-15, July.
    3. Nowak, Benjamin & Michaud, Audrey & Marliac, Gaëlle, 2022. "Assessment of the diversity of crop rotations based on network analysis indicators," Agricultural Systems, Elsevier, vol. 199(C).
    4. Catarino, Rui & Therond, Olivier & Berthomier, Jérémy & Miara, Maurice & Mérot, Emmanuel & Misslin, Renaud & Vanhove, Paul & Villerd, Jean & Angevin, Frédérique, 2021. "Fostering local crop-livestock integration via legume exchanges using an innovative integrated assessment and modelling approach based on the MAELIA platform," Agricultural Systems, Elsevier, vol. 189(C).
    5. Ruiz-Martinez, I. & Martinetti, D. & Marraccini, E. & Debolini, M., 2022. "Modeling drivers of farming system trajectories in Mediterranean peri-urban regions: Two case studies in Avignon (France) and Pisa (Italy)," Agricultural Systems, Elsevier, vol. 202(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nesme, Thomas & Brisson, Nadine & Lescourret, Francoise & Bellon, Stephane & Crete, Xavier & Plenet, Daniel & Habib, Robert, 2006. "Epistics: A dynamic model to generate nitrogen fertilisation and irrigation schedules in apple orchards, with special attention to qualitative evaluation of the model," Agricultural Systems, Elsevier, vol. 90(1-3), pages 202-225, October.
    2. Merot, A. & Bergez, J.-E. & Capillon, A. & Wery, J., 2008. "Analysing farming practices to develop a numerical, operational model of farmers' decision-making processes: An irrigated hay cropping system in France," Agricultural Systems, Elsevier, vol. 98(2), pages 108-118, September.
    3. Mamta Mehra & Chander Kumar Singh, 2019. "Identification of resource management domain-specific best practices in the agriculture sector for the Mewat region of Haryana, India," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 21(5), pages 2277-2296, October.
    4. Ren Yang & Xiuli Luo & Qian Xu & Xin Zhang & Jiapei Wu, 2021. "Measuring the Impact of the Multiple Cropping Index of Cultivated Land during Continuous and Rapid Rise of Urbanization in China: A Study from 2000 to 2015," Land, MDPI, vol. 10(5), pages 1-22, May.
    5. Cao, Juan & Zhang, Zhao & Tao, Fulu & Chen, Yi & Luo, Xiangzhong & Xie, Jun, 2023. "Forecasting global crop yields based on El Nino Southern Oscillation early signals," Agricultural Systems, Elsevier, vol. 205(C).
    6. Meike Weltin & Silke Hüttel, 2023. "Sustainable Intensification Farming as an Enabler for Farm Eco-Efficiency?," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 84(1), pages 315-342, January.
    7. Manogna R. L. & Aswini Kumar Mishra, 2022. "Agricultural production efficiency of Indian states: Evidence from data envelopment analysis," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 27(4), pages 4244-4255, October.
    8. Rada, Nicholas E., 2013. "Agricultural Growth in India: Examining the Post-Green Revolution Transition," 2013 Annual Meeting, August 4-6, 2013, Washington, D.C. 149547, Agricultural and Applied Economics Association.
    9. Terrance Hurley & Jawoo Koo & Kindie Tesfaye, 2018. "Weather risk: how does it change the yield benefits of nitrogen fertilizer and improved maize varieties in sub‐Saharan Africa?," Agricultural Economics, International Association of Agricultural Economists, vol. 49(6), pages 711-723, November.
    10. J. Vernon Henderson & Sebastian Kriticos, 2018. "The Development of the African System of Cities," Annual Review of Economics, Annual Reviews, vol. 10(1), pages 287-314, August.
    11. Zhongen Niu & Huimin Yan & Fang Liu, 2020. "Decreasing Cropping Intensity Dominated the Negative Trend of Cropland Productivity in Southern China in 2000–2015," Sustainability, MDPI, vol. 12(23), pages 1-14, December.
    12. Tiziano Gomiero, 2016. "Soil Degradation, Land Scarcity and Food Security: Reviewing a Complex Challenge," Sustainability, MDPI, vol. 8(3), pages 1-41, March.
    13. Giovani Preza-Fontes & Junming Wang & Muhammad Umar & Meilan Qi & Kamaljit Banger & Cameron Pittelkow & Emerson Nafziger, 2021. "Development of an Online Tool for Tracking Soil Nitrogen to Improve the Environmental Performance of Maize Production," Sustainability, MDPI, vol. 13(10), pages 1-14, May.
    14. Soraya Tanure & Carlos Nabinger & João Luiz Becker, 2015. "Bioeconomic Model of Decision Support System for Farm Management: Proposal of a Mathematical Model," Systems Research and Behavioral Science, Wiley Blackwell, vol. 32(6), pages 658-671, November.
    15. Marie Lassalas & Sabine Duvaleix & Laure Latruffe, 2024. "The technical and economic effects of biodiversity standards on wheat production," European Review of Agricultural Economics, Oxford University Press and the European Agricultural and Applied Economics Publications Foundation, vol. 51(2), pages 275-308.
    16. Lescourret, F. & Blecher, N. & Habib, R. & Chadoeuf, J. & Agostini, D. & Pailly, O. & Vaissiere, B. & Poggi, I., 1999. "Development of a simulation model for studying kiwi fruit orchard management," Agricultural Systems, Elsevier, vol. 59(2), pages 215-239, February.
    17. Ning Luo & Qingfeng Meng & Puyu Feng & Ziren Qu & Yonghong Yu & De Li Liu & Christoph Müller & Pu Wang, 2023. "China can be self-sufficient in maize production by 2030 with optimal crop management," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    18. Zhang, Bangbang & Li, Xian & Chen, Haibin & Niu, Wenhao & Kong, Xiangbin & Yu, Qiang & Zhao, Minjuan & Xia, Xianli, 2022. "Identifying opportunities to close yield gaps in China by use of certificated cultivars to estimate potential productivity," Land Use Policy, Elsevier, vol. 117(C).
    19. Coronese, Matteo & Occelli, Martina & Lamperti, Francesco & Roventini, Andrea, 2023. "AgriLOVE: Agriculture, land-use and technical change in an evolutionary, agent-based model," Ecological Economics, Elsevier, vol. 208(C).
    20. Vanwindekens, Frédéric M. & Stilmant, Didier & Baret, Philippe V., 2013. "Development of a broadened cognitive mapping approach for analysing systems of practices in social–ecological systems," Ecological Modelling, Elsevier, vol. 250(C), pages 352-362.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agisys:v:173:y:2019:i:c:p:491-503. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agsy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.