IDEAS home Printed from https://ideas.repec.org/a/eee/agisys/v166y2018icp26-35.html
   My bibliography  Save this article

Greenhouse gas emissions during storage of manure and digestates: Key role of methane for prediction and mitigation

Author

Listed:
  • Baral, Khagendra R.
  • Jégo, Guillaume
  • Amon, Barbara
  • Bol, Roland
  • Chantigny, Martin H.
  • Olesen, Jørgen E.
  • Petersen, Søren O.

Abstract

Treatment of liquid manure and other wastes by anaerobic digestion (AD) adds to renewable energy targets, and it is thus a favorable strategy for greenhouse gas (GHG) mitigation. Both untreated manure and digestates are typically stored for a period in order to recycle nutrients for crop production, and emissions of methane (CH4), nitrous oxide (N2O) and ammonia (NH3) during storage contribute to the overall GHG balance. We determined emissions of all three gases during summer and autumn storage of digestates and untreated manure in pilot-scale experiments. Using these and other data, GHG balances were calculated for treatment, post-treatment storage, and field application. The GHG mitigation potential of AD was demonstrated, but CH4 emissions during storage dominated the overall GHG balance irrespective of treatment; hence for GHG inventories and mitigation efforts, the correct estimation of this source is critical. Current inventory guidelines from the Intergovernmental Panel on Climate Change (IPCC) estimate CH4 emissions from manure management based on a simple classification of livestock production systems, volatile solids (VS) excreted, and annual average temperature, and the effects of treatment and management at farm level are therefore not accounted for in any detail. Two empirical models were evaluated, which instead calculate VS degradation and storage temperature with daily time steps; both models were based on concepts presented by Sommer et al. (2004). Parameters for the Arrhenius temperature relationship of CH4 production, i.e., apparent activation energy, Ea, and pre-exponential factor, A, could be selected, for which cumulative CH4 emissions calculated with the two models approached observed emissions. However, the magnitude of emissions during a warm period was not well reproduced, and the parameters identified for the two models differed. Sensitivity analyses showed that deviations from observations could not be explained by errors in manure storage temperature. The results thus suggest that CH4 emissions cannot be predicted from VS and temperature alone, i.e., that the methanogenic potential changes during storage. Determination of parameters for estimation of CH4 emissions from manure management is discussed with reference to recent literature.

Suggested Citation

  • Baral, Khagendra R. & Jégo, Guillaume & Amon, Barbara & Bol, Roland & Chantigny, Martin H. & Olesen, Jørgen E. & Petersen, Søren O., 2018. "Greenhouse gas emissions during storage of manure and digestates: Key role of methane for prediction and mitigation," Agricultural Systems, Elsevier, vol. 166(C), pages 26-35.
  • Handle: RePEc:eee:agisys:v:166:y:2018:i:c:p:26-35
    DOI: 10.1016/j.agsy.2018.07.009
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0308521X17310119
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agsy.2018.07.009?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gabriel Yvon-Durocher & Andrew P. Allen & David Bastviken & Ralf Conrad & Cristian Gudasz & Annick St-Pierre & Nguyen Thanh-Duc & Paul A. del Giorgio, 2014. "Methane fluxes show consistent temperature dependence across microbial to ecosystem scales," Nature, Nature, vol. 507(7493), pages 488-491, March.
    2. Boldrin, Alessio & Baral, Khagendra Raj & Fitamo, Temesgen & Vazifehkhoran, Ali Heidarzadeh & Jensen, Ida Græsted & Kjærgaard, Ida & Lyng, Kari-Anne & van Nguyen, Quan & Nielsen, Lise Skovsgaard & Tri, 2016. "Optimised biogas production from the co-digestion of sugar beet with pig slurry: Integrating energy, GHG and economic accounting," Energy, Elsevier, vol. 112(C), pages 606-617.
    3. Yusuf, Rafiu O. & Noor, Zainura Z. & Abba, Ahmad H. & Hassan, Mohd Ariffin Abu & Din, Mohd Fadhil Mohd, 2012. "Methane emission by sectors: A comprehensive review of emission sources and mitigation methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 5059-5070.
    4. Taghizadeh-Toosi, Arezoo & Olesen, Jørgen E., 2016. "Modelling soil organic carbon in Danish agricultural soils suggests low potential for future carbon sequestration," Agricultural Systems, Elsevier, vol. 145(C), pages 83-89.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lara Resman & Maja Berden Zrimec & Vid Žitko & Borut Lazar & Robert Reinhardt & Ana Cerar & Rok Mihelič, 2023. "Microalgae Production on Biogas Digestate in Sub-Alpine Region of Europe—Development of Simple Management Decision Support Tool," Sustainability, MDPI, vol. 15(24), pages 1-25, December.
    2. Egidijus Buivydas & Kęstutis Navickas & Kęstutis Venslauskas, 2024. "A Life Cycle Assessment of Methane Slip in Biogas Upgrading Based on Permeable Membrane Technology with Variable Methane Concentration in Raw Biogas," Sustainability, MDPI, vol. 16(8), pages 1-18, April.
    3. Henrik B. Møller & Peter Sørensen & Jørgen E. Olesen & Søren O. Petersen & Tavs Nyord & Sven G. Sommer, 2022. "Agricultural Biogas Production—Climate and Environmental Impacts," Sustainability, MDPI, vol. 14(3), pages 1-24, February.
    4. Dieu Linh Hoang & Brienne Wiersema & Henri C. Moll & Sanderine Nonhebel, 2022. "The impact of biogas production on the organic carbon input to the soil of Dutch dairy farms: A substance flow analysis," Journal of Industrial Ecology, Yale University, vol. 26(2), pages 491-508, April.
    5. Fan, Yee Van & Romanenko, Sergey & Gai, Limei & Kupressova, Ekaterina & Varbanov, Petar Sabev & Klemeš, Jiří Jaromír, 2021. "Biomass integration for energy recovery and efficient use of resources: Tomsk Region," Energy, Elsevier, vol. 235(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Henrik B. Møller & Peter Sørensen & Jørgen E. Olesen & Søren O. Petersen & Tavs Nyord & Sven G. Sommer, 2022. "Agricultural Biogas Production—Climate and Environmental Impacts," Sustainability, MDPI, vol. 14(3), pages 1-24, February.
    2. Sadowski, Arkadiusz & Wojcieszak-Zbierska, Monika Małgorzata & Zmyślona, Jagoda, 2024. "Agricultural production in the least developed countries and its impact on emission of greenhouse gases – An energy approach," Land Use Policy, Elsevier, vol. 136(C).
    3. Kang, Mary & Mauzerall, Denise L. & Ma, Daniel Z. & Celia, Michael A., 2019. "Reducing methane emissions from abandoned oil and gas wells: Strategies and costs," Energy Policy, Elsevier, vol. 132(C), pages 594-601.
    4. Venturini, Giada & Pizarro-Alonso, Amalia & Münster, Marie, 2019. "How to maximise the value of residual biomass resources: The case of straw in Denmark," Applied Energy, Elsevier, vol. 250(C), pages 369-388.
    5. Skovsgaard, Lise & Jacobsen, Henrik Klinge, 2017. "Economies of scale in biogas production and the significance of flexible regulation," Energy Policy, Elsevier, vol. 101(C), pages 77-89.
    6. Jensen, Ida Græsted & Münster, Marie & Pisinger, David, 2017. "Optimizing the supply chain of biomass and biogas for a single plant considering mass and energy losses," European Journal of Operational Research, Elsevier, vol. 262(2), pages 744-758.
    7. Sinha, Avik & Sengupta, Tuhin & Saha, Tanaya, 2020. "Technology policy and environmental quality at crossroads: Designing SDG policies for select Asia Pacific countries," Technological Forecasting and Social Change, Elsevier, vol. 161(C).
    8. Zhang, Bo & Chen, G.Q., 2014. "Methane emissions in China 2007," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 886-902.
    9. Belle Simon & Poska Anneli & Hossann Christian & Tõnno Ilmar, 2017. "14,000 years of climate-induced changes in carbon resources sustaining benthic consumers in a small boreal lake (Lake Tollari, Estonia)," Climatic Change, Springer, vol. 145(1), pages 205-219, November.
    10. Shuo Sun & Linwei Ma & Zheng Li, 2021. "Methane Emission Estimation of Oil and Gas Sector: A Review of Measurement Technologies, Data Analysis Methods and Uncertainty Estimation," Sustainability, MDPI, vol. 13(24), pages 1-29, December.
    11. Modica, Marco, 2017. "Does the construction of biogas plants affect local property values?," Economics Letters, Elsevier, vol. 159(C), pages 169-172.
    12. Tom Karras & André Brosowski & Daniela Thrän, 2022. "A Review on Supply Costs and Prices of Residual Biomass in Techno-Economic Models for Europe," Sustainability, MDPI, vol. 14(12), pages 1-25, June.
    13. Fernández-Getino, A.P. & Alonso-Prados, J.L. & Santín-Montanyá, M.I., 2018. "Challenges and prospects in connectivity analysis in agricultural systems: Actions to implement policies on land management and carbon storage at EU level," Land Use Policy, Elsevier, vol. 71(C), pages 146-159.
    14. Xingfu Wang & Xianfei Huang & Jiwei Hu & Zhenming Zhang, 2020. "The Spatial Distribution Characteristics of Soil Organic Carbon and Its Effects on Topsoil under Different Karst Landforms," IJERPH, MDPI, vol. 17(8), pages 1-19, April.
    15. Bramstoft, Rasmus & Pizarro-Alonso, Amalia & Jensen, Ida Græsted & Ravn, Hans & Münster, Marie, 2020. "Modelling of renewable gas and renewable liquid fuels in future integrated energy systems," Applied Energy, Elsevier, vol. 268(C).
    16. Wang, Hanxi & Xu, Jianling & Sheng, Lianxi & Liu, Xuejun, 2018. "Effect of addition of biogas slurry for anaerobic fermentation of deer manure on biogas production," Energy, Elsevier, vol. 165(PB), pages 411-418.
    17. De Laporte, Aaron V. & Ripplinger, David G., 2019. "The effects of site selection, opportunity costs and transportation costs on bioethanol production," Renewable Energy, Elsevier, vol. 131(C), pages 73-82.
    18. Chia-Nan Wang & Hoang-Phu Nguyen & Cheng-Wen Chang, 2021. "Environmental Efficiency Evaluation in the Top Asian Economies: An Application of DEA," Mathematics, MDPI, vol. 9(8), pages 1-19, April.
    19. Usman, Muhammad & Wan Daud, W.M.A. & Abbas, Hazzim F., 2015. "Dry reforming of methane: Influence of process parameters—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 710-744.
    20. Noor, Zainura Zainon & Yusuf, Rafiu Olasunkanmi & Abba, Ahmad Halilu & Abu Hassan, Mohd Ariffin & Mohd Din, Mohd Fadhil, 2013. "An overview for energy recovery from municipal solid wastes (MSW) in Malaysia scenario," Renewable and Sustainable Energy Reviews, Elsevier, vol. 20(C), pages 378-384.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agisys:v:166:y:2018:i:c:p:26-35. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agsy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.