IDEAS home Printed from https://ideas.repec.org/a/eee/agisys/v165y2018icp274-282.html
   My bibliography  Save this article

Fertiliser strategies for improving nitrogen use efficiency in grazed dairy pastures

Author

Listed:
  • Smith, Andrew P.
  • Christie, Karen M.
  • Rawnsley, Richard P.
  • Eckard, Richard J.

Abstract

Evidence from farm level studies indicates that there is potential to improve nitrogen (N) use efficiency of the predominately pasture-based dairy farms in Australia. This is possible via several ways which includes modifying the timing and rates of N fertiliser applied to pasture. Traditionally fertiliser strategies have been based on a “recipe” approach where N fertiliser, primarily urea, is applied a set rate following grazing. The aim of this study was to compare the pasture dry matter response, N loss and response rate of fertiliser strategies which used increasing knowledge of plant and soil conditions in different ways. The study was conducted under grazing conditions using the biophysical model, DairyMod and repeated at several locations and farming systems in the dairy regions of Australia. In comparison to set rates this study showed that strategic approaches to N fertiliser have the potential to be more efficient in N use and lower both N inputs and N losses with little impact of pasture production. This was evident across all seasons and locations studied. Strategies that used the plant N status to trigger fertiliser timing and rates were more efficient and had lower environmental N losses than those that used fixed rates or soil N information. Fertilising per plant N requirements was the most efficient – and therefore should be the priority for development – particularly in view of the greater expense of fertilisers that are slow release. Precision fertiliser management strategies have the value in terms of reducing fertiliser use and loss during autumn and to a lesser extent in summer, with the least value in winter. However, for the strategies to be properly evaluated for pasture based dairy farms with grazing, a whole farm analysis needs to be conducted that incorporates other sources of feed. This is a necessary inclusion in any subsequent studies.

Suggested Citation

  • Smith, Andrew P. & Christie, Karen M. & Rawnsley, Richard P. & Eckard, Richard J., 2018. "Fertiliser strategies for improving nitrogen use efficiency in grazed dairy pastures," Agricultural Systems, Elsevier, vol. 165(C), pages 274-282.
  • Handle: RePEc:eee:agisys:v:165:y:2018:i:c:p:274-282
    DOI: 10.1016/j.agsy.2018.06.017
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0308521X18300076
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agsy.2018.06.017?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Stott, Kerry J. & Gourley, Cameron J.P., 2016. "Intensification, nitrogen use and recovery in grazing-based dairy systems," Agricultural Systems, Elsevier, vol. 144(C), pages 101-112.
    2. Christie, Karen M. & Smith, Andrew P. & Rawnsley, Richard P. & Harrison, Matthew T. & Eckard, Richard J., 2018. "Simulated seasonal responses of grazed dairy pastures to nitrogen fertilizer in SE Australia: Pasture production," Agricultural Systems, Elsevier, vol. 166(C), pages 36-47.
    3. Smith, Andrew P. & Western, Andrew W., 2013. "Predicting nitrogen dynamics in a dairy farming catchment using systems synthesis modelling," Agricultural Systems, Elsevier, vol. 115(C), pages 144-154.
    4. Harrison, Matthew T. & Cullen, Brendan R. & Rawnsley, Richard P., 2016. "Modelling the sensitivity of agricultural systems to climate change and extreme climatic events," Agricultural Systems, Elsevier, vol. 148(C), pages 135-148.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Charné Viljoen & Janke van der Colf & Pieter Andreas Swanepoel, 2020. "Benefits Are Limited with High Nitrogen Fertiliser Rates in Kikuyu-Ryegrass Pasture Systems," Land, MDPI, vol. 9(6), pages 1-20, May.
    2. Pedersen, Michael Friis & Gyldengren, Jacob Glerup & Pedersen, Søren Marcus & Diamantopoulos, Efstathios & Gislum, René & Styczen, Merete Elisabeth, 2021. "A simulation of variable rate nitrogen application in winter wheat with soil and sensor information - An economic feasibility study," Agricultural Systems, Elsevier, vol. 192(C).
    3. Christie, K.M. & Smith, A.P. & Rawnsley, R.P. & Harrison, M.T. & Eckard, R.J., 2020. "Simulated seasonal responses of grazed dairy pastures to nitrogen fertilizer in SE Australia: N loss and recovery," Agricultural Systems, Elsevier, vol. 182(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Christie, K.M. & Smith, A.P. & Rawnsley, R.P. & Harrison, M.T. & Eckard, R.J., 2020. "Simulated seasonal responses of grazed dairy pastures to nitrogen fertilizer in SE Australia: N loss and recovery," Agricultural Systems, Elsevier, vol. 182(C).
    2. Sahar Shahpari & Janelle Allison & Matthew Tom Harrison & Roger Stanley, 2021. "An Integrated Economic, Environmental and Social Approach to Agricultural Land-Use Planning," Land, MDPI, vol. 10(4), pages 1-18, April.
    3. Mack, Gabriele & Huber, Robert, 2017. "On-farm compliance costs and N surplus reduction of mixed dairy farms under grassland-based feeding systems," Agricultural Systems, Elsevier, vol. 154(C), pages 34-44.
    4. Christie, Karen M. & Smith, Andrew P. & Rawnsley, Richard P. & Harrison, Matthew T. & Eckard, Richard J., 2018. "Simulated seasonal responses of grazed dairy pastures to nitrogen fertilizer in SE Australia: Pasture production," Agricultural Systems, Elsevier, vol. 166(C), pages 36-47.
    5. Ara, Iffat & Turner, Lydia & Harrison, Matthew Tom & Monjardino, Marta & deVoil, Peter & Rodriguez, Daniel, 2021. "Application, adoption and opportunities for improving decision support systems in irrigated agriculture: A review," Agricultural Water Management, Elsevier, vol. 257(C).
    6. Charné Viljoen & Janke van der Colf & Pieter Andreas Swanepoel, 2020. "Benefits Are Limited with High Nitrogen Fertiliser Rates in Kikuyu-Ryegrass Pasture Systems," Land, MDPI, vol. 9(6), pages 1-20, May.
    7. Kalaugher, Electra & Beukes, Pierre & Bornman, Janet F. & Clark, Anthony & Campbell, David I., 2017. "Modelling farm-level adaptation of temperate, pasture-based dairy farms to climate change," Agricultural Systems, Elsevier, vol. 153(C), pages 53-68.
    8. Monjardino, Marta & Harrison, Matthew T. & DeVoil, Peter & Rodriguez, Daniel & Sadras, Victor O., 2022. "Agronomic and on-farm infrastructure adaptations to manage economic risk in Australian irrigated broadacre systems: A case study," Agricultural Water Management, Elsevier, vol. 269(C).
    9. Mack, Gabriele & Kohler, Andreas, 2017. "Short- and long-run policy evaluation: support for grassland-based milk production in Switzerland," 2017 International Congress, August 28-September 1, 2017, Parma, Italy 261116, European Association of Agricultural Economists.
    10. Thayalakumaran, T. & Roberts, A. & Beverly, C. & Vigiak, O. & Norng, S. & Stott, K., 2016. "Assessing nitrogen fluxes from dairy farms using a modelling approach: A case study in the Moe River catchment, Victoria, Australia," Agricultural Water Management, Elsevier, vol. 178(C), pages 37-51.
    11. Worden, David & Hailu, Getu, 2020. "Do genomic innovations enable an economic and environmental win-win in dairy production?," Agricultural Systems, Elsevier, vol. 181(C).
    12. Smith, Andrew P. & Beale, Peter & Fulkerson, Bill J. & Eckard, Richard J., 2019. "Managing the nitrogen status of subtropical dairy pastures for production, efficiency and profit," Agricultural Systems, Elsevier, vol. 176(C).
    13. Meyer, Rachelle S. & Cullen, Brendan R. & Whetton, Penny H. & Robertson, Fiona A. & Eckard, Richard J., 2018. "Potential impacts of climate change on soil organic carbon and productivity in pastures of south eastern Australia," Agricultural Systems, Elsevier, vol. 167(C), pages 34-46.
    14. Zhao, Jiongchao & Wang, Chong & Shi, Xiaoyu & Bo, Xiaozhi & Li, Shuo & Shang, Mengfei & Chen, Fu & Chu, Qingquan, 2021. "Modeling climatically suitable areas for soybean and their shifts across China," Agricultural Systems, Elsevier, vol. 192(C).
    15. An-Vo, Duc-Anh & Cobon, David & Owens, Jo & Liedloff, Adam & Cowan, Tim & Power, Scott, 2024. "Impacts of environmental feedbacks on the production of a Central Queensland beef enterprise in a future climate," Agricultural Systems, Elsevier, vol. 214(C).
    16. Smith, Andrew P. & Christie, Karen M. & Harrison, Matthew T. & Eckard, Richard J., 2021. "Ammonia volatilisation from grazed, pasture based dairy farming systems," Agricultural Systems, Elsevier, vol. 190(C).
    17. Koesling, Matthias & Hansen, Sissel & Bleken, Marina Azzaroli, 2017. "Variations in nitrogen utilisation on conventional and organic dairy farms in Norway," Agricultural Systems, Elsevier, vol. 157(C), pages 11-21.
    18. Asante, Bright Owusu & Koomson, Isaac & Villano, Renato & Wiredu, Alexander Nimo, 2021. "Gender and Agricultural Technology Adoption: Evidence from Integrated Crop-Livestock Management Practices (ICLMPs) Among Men and Women Smallholder Farmers in Ghana," 2021 Conference, August 17-31, 2021, Virtual 315093, International Association of Agricultural Economists.
    19. Yan Li & Junfang Zhao & Rui Miao & Yan Huang & Xiaoqing Fan & Xiaoqing Liu & Xueqi Wang & Ye Wang & Yuyang Shen, 2022. "Analysis of the Temporal and Spatial Distribution of Extreme Climate Indices in Central China," Sustainability, MDPI, vol. 14(4), pages 1-17, February.
    20. de Frutos Cachorro, Julia & Gobin, Anne & Buysse, Jeroen, 2018. "Farm-level adaptation to climate change: The case of the Loam region in Belgium," Agricultural Systems, Elsevier, vol. 165(C), pages 164-176.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agisys:v:165:y:2018:i:c:p:274-282. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agsy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.