IDEAS home Printed from https://ideas.repec.org/a/eee/agisys/v151y2017icp136-147.html
   My bibliography  Save this article

A multi model evaluation of long-term effects of crop management and cropping systems on nitrogen dynamics in the Canadian semi-arid prairie

Author

Listed:
  • Dutta, B.
  • Grant, B.B.
  • Campbell, C.A.
  • Lemke, R.L.
  • Desjardins, R.L.
  • Smith, W.N.

Abstract

Process-based biogeochemical models such as the DeNitrification-DeComposition (DNDC) and DayCent models can provide reliable estimations of components of the nitrogen (N) cycle but have rarely been evaluated for a more complete N balance. This is important in order to assess the long-term effects of management practices on soil and environmental quality. Using published data collected from a long term study in the Canadian semi-arid prairie, the Canadian DNDC version (DNDC v.CAN) and DayCent models were evaluated for their ability to simulate the long term nitrogen dynamics and budgets as well as nitrogen use efficiencies (NUEs) in a loam/silt loam soil for three distinct spring wheat (Triticum aestivum L.) cropping systems. Both DNDC v.CAN and DayCent models predicted the spring wheat grain yields, above-ground plant biomass and nitrogen uptake well. The predicted NUEs in DNDC v.CAN, calculated using two approaches with respect to grain yield and grain N concentration, indicated good correlations to the observed values with r≥0.70 and low biases and average relative errors. The N balances were also simulated well in the two models, however DayCent showed a higher estimate of the deficit between N inputs and outputs, termed ‘Unaccounted N’, in all three systems compared to DNDC v.CAN. For both model simulations and the observed data, N outputs in the form of grain N uptake and N losses (nitrogen leaching, N gas emissions) were greater than N inputs except in the ContW (NP) system. In general, a multiple linear regression for estimations of NUEs with respect to N balance and N inputs across all three cropping systems showed that, DNDC v.CAN correlated better with the observed data compared to DayCent. Thus, based on model performance in this study, DNDC v.CAN as a process-based model offers promise as a tool for analyzing different cropping systems with varying N rates in terms of N dynamics and subsequent environmental impacts and benefits.

Suggested Citation

  • Dutta, B. & Grant, B.B. & Campbell, C.A. & Lemke, R.L. & Desjardins, R.L. & Smith, W.N., 2017. "A multi model evaluation of long-term effects of crop management and cropping systems on nitrogen dynamics in the Canadian semi-arid prairie," Agricultural Systems, Elsevier, vol. 151(C), pages 136-147.
  • Handle: RePEc:eee:agisys:v:151:y:2017:i:c:p:136-147
    DOI: 10.1016/j.agsy.2016.12.003
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0308521X16303249
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agsy.2016.12.003?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Andrzej Sapek, 1997. "Effects of Agriculture on Water Quality: A Polish Perspective, The," Center for Agricultural and Rural Development (CARD) Publications 97-bb6, Center for Agricultural and Rural Development (CARD) at Iowa State University.
    2. Mkhabela, Manasah S. & Bullock, Paul R., 2012. "Performance of the FAO AquaCrop model for wheat grain yield and soil moisture simulation in Western Canada," Agricultural Water Management, Elsevier, vol. 110(C), pages 16-24.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Puertes, Cristina & Bautista, Inmaculada & Lidón, Antonio & Francés, Félix, 2021. "Best management practices scenario analysis to reduce agricultural nitrogen loads and sediment yield to the semiarid Mar Menor coastal lagoon (Spain)," Agricultural Systems, Elsevier, vol. 188(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Keikha, Mahdi & Darzi- Naftchali, Abdullah & Motevali, Ali & Valipour, Mohammad, 2023. "Effect of nitrogen management on the environmental and economic sustainability of wheat production in different climates," Agricultural Water Management, Elsevier, vol. 276(C).
    2. Ran, Hui & Kang, Shaozhong & Li, Fusheng & Du, Taisheng & Tong, Ling & Li, Sien & Ding, Risheng & Zhang, Xiaotao, 2018. "Parameterization of the AquaCrop model for full and deficit irrigated maize for seed production in arid Northwest China," Agricultural Water Management, Elsevier, vol. 203(C), pages 438-450.
    3. Alex Zizinga & Jackson Gilbert Majaliwa Mwanjalolo & Britta Tietjen & Bobe Bedadi & Ramon Amaro de Sales & Dennis Beesigamukama, 2022. "Simulating Maize Productivity under Selected Climate Smart Agriculture Practices Using AquaCrop Model in a Sub-humid Environment," Sustainability, MDPI, vol. 14(4), pages 1-17, February.
    4. Iqbal, M. Anjum & Shen, Yanjun & Stricevic, Ruzica & Pei, Hongwei & Sun, Hongyoung & Amiri, Ebrahim & Penas, Angel & del Rio, Sara, 2014. "Evaluation of the FAO AquaCrop model for winter wheat on the North China Plain under deficit irrigation from field experiment to regional yield simulation," Agricultural Water Management, Elsevier, vol. 135(C), pages 61-72.
    5. Razzaghi, Fatemeh & Zhou, Zhenjiang & Andersen, Mathias N. & Plauborg, Finn, 2017. "Simulation of potato yield in temperate condition by the AquaCrop model," Agricultural Water Management, Elsevier, vol. 191(C), pages 113-123.
    6. Adeboye, Omotayo B. & Schultz, Bart & Adekalu, Kenneth O. & Prasad, Krishna C., 2019. "Performance evaluation of AquaCrop in simulating soil water storage, yield, and water productivity of rainfed soybeans (Glycine max L. merr) in Ile-Ife, Nigeria," Agricultural Water Management, Elsevier, vol. 213(C), pages 1130-1146.
    7. Toumi, J. & Er-Raki, S. & Ezzahar, J. & Khabba, S. & Jarlan, L. & Chehbouni, A., 2016. "Performance assessment of AquaCrop model for estimating evapotranspiration, soil water content and grain yield of winter wheat in Tensift Al Haouz (Morocco): Application to irrigation management," Agricultural Water Management, Elsevier, vol. 163(C), pages 219-235.
    8. Pereira, Luis S. & Paredes, Paula & Rodrigues, Gonçalo C. & Neves, Manuela, 2015. "Modeling malt barley water use and evapotranspiration partitioning in two contrasting rainfall years. Assessing AquaCrop and SIMDualKc models," Agricultural Water Management, Elsevier, vol. 159(C), pages 239-254.
    9. Li Fawen & Zhang Manjing & Liu Yaoze, 2022. "Quantitative research on drought loss sensitivity of summer maize based on AquaCrop model," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 112(2), pages 1065-1084, June.
    10. Wellens, Joost & Raes, Dirk & Traore, Farid & Denis, Antoine & Djaby, Bakary & Tychon, Bernard, 2013. "Performance assessment of the FAO AquaCrop model for irrigated cabbage on farmer plots in a semi-arid environment," Agricultural Water Management, Elsevier, vol. 127(C), pages 40-47.
    11. Linker, Raphael & Ioslovich, Ilya & Sylaios, Georgios & Plauborg, Finn & Battilani, Adriano, 2016. "Optimal model-based deficit irrigation scheduling using AquaCrop: A simulation study with cotton, potato and tomato," Agricultural Water Management, Elsevier, vol. 163(C), pages 236-243.
    12. Gaona, Jaime & Benito-Verdugo, Pilar & Martínez-Fernández, José & González-Zamora, Ángel & Almendra-Martín, Laura & Herrero-Jiménez, Carlos Miguel, 2023. "Predictive value of soil moisture and concurrent variables in the multivariate modelling of cereal yields in water-limited environments," Agricultural Water Management, Elsevier, vol. 282(C).
    13. Mustafa, S.M.T. & Vanuytrecht, E. & Huysmans, M., 2017. "Combined deficit irrigation and soil fertility management on different soil textures to improve wheat yield in drought-prone Bangladesh," Agricultural Water Management, Elsevier, vol. 191(C), pages 124-137.
    14. Er-Raki, S. & Bouras, E. & Rodriguez, J.C. & Watts, C.J. & Lizarraga-Celaya, C. & Chehbouni, A., 2021. "Parameterization of the AquaCrop model for simulating table grapes growth and water productivity in an arid region of Mexico," Agricultural Water Management, Elsevier, vol. 245(C).
    15. Seyed Ahmadi & Elnaz Mosallaeepour & Ali Kamgar-Haghighi & Ali Sepaskhah, 2015. "Modeling Maize Yield and Soil Water Content with AquaCrop Under Full and Deficit Irrigation Managements," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(8), pages 2837-2853, June.
    16. Dhouib, M. & Zitouna-Chebbi, R. & Prévot, L. & Molénat, J. & Mekki, I. & Jacob, F., 2022. "Multicriteria evaluation of the AquaCrop crop model in a hilly rainfed Mediterranean agrosystem," Agricultural Water Management, Elsevier, vol. 273(C).
    17. Yang, Huicai & Wang, Huixiao & Fu, Guobin & Yan, Haiming & Zhao, Panpan & Ma, Meihong, 2017. "A modified soil water deficit index (MSWDI) for agricultural drought monitoring: Case study of Songnen Plain, China," Agricultural Water Management, Elsevier, vol. 194(C), pages 125-138.
    18. Wu, Bingyan & Ma, Dengke & Shi, Yu & Zuo, Guanqiang & Chang, Feng & Sun, Mengqing & Yin, Lina & Wang, Shiwen, 2024. "Optimizing tillage practice based on water supply during the growing season in wheat and maize production in northern China," Agricultural Water Management, Elsevier, vol. 300(C).
    19. El Chami, D. & Knox, J.W. & Daccache, A. & Weatherhead, E.K., 2015. "The economics of irrigating wheat in a humid climate – A study in the East of England," Agricultural Systems, Elsevier, vol. 133(C), pages 97-108.
    20. Emmanuel Lekakis & Athanasios Zaikos & Alexios Polychronidis & Christos Efthimiou & Ioannis Pourikas & Theano Mamouka, 2022. "Evaluation of Different Modelling Techniques with Fusion of Satellite, Soil and Agro-Meteorological Data for the Assessment of Durum Wheat Yield under a Large Scale Application," Agriculture, MDPI, vol. 12(10), pages 1-23, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agisys:v:151:y:2017:i:c:p:136-147. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agsy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.