IDEAS home Printed from https://ideas.repec.org/a/eee/agisys/v150y2017icp34-45.html
   My bibliography  Save this article

Communicative farm-specific diagnosis of potential simultaneous savings in costs and natural resource demand of feed on dairy farms

Author

Listed:
  • Huysveld, Sophie
  • Van Meensel, Jef
  • Van linden, Veerle
  • De Meester, Steven
  • Peiren, Nico
  • Muylle, Hilde
  • Dewulf, Jo
  • Lauwers, Ludwig

Abstract

Feed plays a key role for dairy farmers to produce in an environmentally sustainable and competitive way. It determines both costs and natural resource demand. In this paper, we investigated whether and how dairy farms could simultaneously reduce feed costs and overall natural resource use in the feed supply chain without reducing farm revenues. We applied the frontier method Data Envelopment Analysis (DEA) on a data sample of specialized dairy farms in the region of Flanders (Belgium). Results showed potential simultaneous savings in costs and natural resources (up to 48%). This could mainly be achieved by increasing technical efficiency (proportionally minimizing the feed inputs, i.e. (i) on-farm produced roughage feed and (ii) purchased feed, consisting of concentrates and by-products) and to a lesser extent by increasing allocative efficiency (substituting these feed inputs up to a cost and/or natural resource use minimizing allocation). We offered farm advisors starting points to identify concrete improvement actions for individual farms, by graphically presenting improvement paths and by relating DEA's outcomes to Key Performance Indicators they are familiar with. High cost and natural resource efficiencies were related with (i) high milk production per cow obtained with as little as possible purchased feed, and (ii) low on-farm roughage production costs per ha associated with lower contract work costs and a lower proportion of grasslands in the available on-farm area. Finding a good equilibrium of purchased feed amounts and stocking density seemed to play a substantial role in optimizing allocative efficiency. Analysis with different frontier methods showed that the shape of the frontier influences the quantified improvement margins and the diagnosis of win-win and trade-off situations. Further research should focus on (i) the accuracy of the constructed frontier, (ii) relations with emission-related impacts and (iii) possible trade-offs between different resource types.

Suggested Citation

  • Huysveld, Sophie & Van Meensel, Jef & Van linden, Veerle & De Meester, Steven & Peiren, Nico & Muylle, Hilde & Dewulf, Jo & Lauwers, Ludwig, 2017. "Communicative farm-specific diagnosis of potential simultaneous savings in costs and natural resource demand of feed on dairy farms," Agricultural Systems, Elsevier, vol. 150(C), pages 34-45.
  • Handle: RePEc:eee:agisys:v:150:y:2017:i:c:p:34-45
    DOI: 10.1016/j.agsy.2016.09.020
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0308521X16301135
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agsy.2016.09.020?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Léopold Simar & Paul W. Wilson, 1998. "Sensitivity Analysis of Efficiency Scores: How to Bootstrap in Nonparametric Frontier Models," Management Science, INFORMS, vol. 44(1), pages 49-61, January.
    2. Thomassen, M.A. & Dolman, M.A. & van Calker, K.J. & de Boer, I.J.M., 2009. "Relating life cycle assessment indicators to gross value added for Dutch dairy farms," Ecological Economics, Elsevier, vol. 68(8-9), pages 2278-2284, June.
    3. Van Meensel, Jef & Lauwers, Ludwig & Van Huylenbroeck, Guido & Van Passel, Steven, 2010. "Comparing frontier methods for economic-environmental trade-off analysis," European Journal of Operational Research, Elsevier, vol. 207(2), pages 1027-1040, December.
    4. Van linden, Veerle & Herman, Lieve, 2014. "A fuel consumption model for off-road use of mobile machinery in agriculture," Energy, Elsevier, vol. 77(C), pages 880-889.
    5. Torsten Hemme & Mohammad Mohi Uddin & Oghaiki Asaah Ndambi, 2014. "Benchmarking Cost of Milk Production in 46 Countries," Journal of Reviews on Global Economics, Lifescience Global, vol. 3, pages 254-270.
    6. Basset-Mens, Claudine & Ledgard, Stewart & Boyes, Mark, 2009. "Eco-efficiency of intensification scenarios for milk production in New Zealand," Ecological Economics, Elsevier, vol. 68(6), pages 1615-1625, April.
    7. Huysveld, Sophie & Van linden, Veerle & De Meester, Steven & Peiren, Nico & Muylle, Hilde & Lauwers, Ludwig & Dewulf, Jo, 2015. "Resource use assessment of an agricultural system from a life cycle perspective – a dairy farm as case study," Agricultural Systems, Elsevier, vol. 135(C), pages 77-89.
    8. Tim Coelli & Ludwig Lauwers & Guido Huylenbroeck, 2007. "Environmental efficiency measurement and the materials balance condition," Journal of Productivity Analysis, Springer, vol. 28(1), pages 3-12, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Camanho, Ana Santos & Silva, Maria Conceicao & Piran, Fabio Sartori & Lacerda, Daniel Pacheco, 2024. "A literature review of economic efficiency assessments using Data Envelopment Analysis," European Journal of Operational Research, Elsevier, vol. 315(1), pages 1-18.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Joanna Domagała, 2021. "Economic and Environmental Aspects of Agriculture in the EU Countries," Energies, MDPI, vol. 14(22), pages 1-23, November.
    2. Atkinson, Scott E. & Tsionas, Mike G., 2021. "Generalized estimation of productivity with multiple bad outputs: The importance of materials balance constraints," European Journal of Operational Research, Elsevier, vol. 292(3), pages 1165-1186.
    3. Ramilan, Thiagarajah & Scrimgeour, Frank & Marsh, Dan, 2011. "Analysis of environmental and economic efficiency using a farm population micro-simulation model," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 81(7), pages 1344-1352.
    4. Oriana Gava & Fabio Bartolini & Francesca Venturi & Gianluca Brunori & Alberto Pardossi, 2020. "Improving Policy Evidence Base for Agricultural Sustainability and Food Security: A Content Analysis of Life Cycle Assessment Research," Sustainability, MDPI, vol. 12(3), pages 1-29, February.
    5. Hoang, Viet-Ngu & Nguyen, Trung Thanh, 2013. "Analysis of environmental efficiency variations: A nutrient balance approach," Ecological Economics, Elsevier, vol. 86(C), pages 37-46.
    6. Arjomandi, Amir & Dakpo, K. Hervé & Seufert, Juergen Heinz, 2018. "Have Asian airlines caught up with European Airlines? A by-production efficiency analysis," Transportation Research Part A: Policy and Practice, Elsevier, vol. 116(C), pages 389-403.
    7. Kuosmanen, Natalia & Kuosmanen, Timo, 2013. "Modeling Cumulative Effects of Nutrient Surpluses in Agriculture: A Dynamic Approach to Material Balance Accounting," Ecological Economics, Elsevier, vol. 90(C), pages 159-167.
    8. Hampf, Benjamin & Rødseth, Kenneth Løvold, 2019. "Environmental efficiency measurement with heterogeneous input quality: A nonparametric analysis of U.S. power plants," Energy Economics, Elsevier, vol. 81(C), pages 610-625.
    9. Aldanondo-Ochoa, Ana M. & Casasnovas-Oliva, Valero L. & Almansa-Sáez, M. Carmen, 2017. "Cross-constrained Measuring the Cost-environment Efficiency in Material Balance Based Frontier Models," Ecological Economics, Elsevier, vol. 142(C), pages 46-55.
    10. Van Middelaar, C.E. & Berentsen, P.B.M. & Dijkstra, J. & De Boer, I.J.M., 2013. "Evaluation of a feeding strategy to reduce greenhouse gas emissions from dairy farming: The level of analysis matters," Agricultural Systems, Elsevier, vol. 121(C), pages 9-22.
    11. Li, Hai-ling & Zhu, Xue-hong & Chen, Jin-yu & Jiang, Fei-tao, 2019. "Environmental regulations, environmental governance efficiency and the green transformation of China's iron and steel enterprises," Ecological Economics, Elsevier, vol. 165(C), pages 1-1.
    12. Hampf, Benjamin, 2018. "Cost and environmental efficiency of U.S. electricity generation: Accounting for heterogeneous inputs and transportation costs," Energy, Elsevier, vol. 163(C), pages 932-941.
    13. Victor MOUTINHO & Margarita ROBAINA & Pedro MACEDO, 2018. "Economic-environmental efficiency of European agriculture - a generalized maximum entropy approach," Agricultural Economics, Czech Academy of Agricultural Sciences, vol. 64(10), pages 423-435.
    14. Aldanondo, Ana M. & Casasnovas, Valero L. & Almansa, M. Carmen, 2016. "Cost-constrained measures of environmental efficiency: a material balance approach," MPRA Paper 72490, University Library of Munich, Germany.
    15. Hampf, Benjamin & Rødseth, Kenneth Løvold, 2015. "Carbon dioxide emission standards for U.S. power plants: An efficiency analysis perspective," Energy Economics, Elsevier, vol. 50(C), pages 140-153.
    16. Rødseth, Kenneth Løvold, 2016. "Environmental efficiency measurement and the materials balance condition reconsidered," European Journal of Operational Research, Elsevier, vol. 250(1), pages 342-346.
    17. Li, Xingchen & Xu, Guangcheng & Wu, Jie & Xu, Chengzhen & Zhu, Qingyuan, 2024. "Evaluation of bank efficiency by considering the uncertainty of nonperforming loans," Omega, Elsevier, vol. 126(C).
    18. Christian Growitsch & Tooraj Jamasb & Christine Müller & Matthias Wissner, 2016. "Social Cost Efficient Service Quality: Integrating Customer Valuation in Incentive Regulation—Evidence from the Case of Norway," International Series in Operations Research & Management Science, in: Joe Zhu (ed.), Data Envelopment Analysis, chapter 0, pages 71-91, Springer.
    19. Franz R. Hahn, 2007. "Determinants of Bank Efficiency in Europe. Assessing Bank Performance Across Markets," WIFO Studies, WIFO, number 31499.
    20. Kerstin Enflo & Per Hjertstrand, 2009. "Relative Sources of European Regional Productivity Convergence: A Bootstrap Frontier Approach," Regional Studies, Taylor & Francis Journals, vol. 43(5), pages 643-659.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agisys:v:150:y:2017:i:c:p:34-45. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agsy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.