IDEAS home Printed from https://ideas.repec.org/a/eee/agisys/v108y2012icp19-28.html
   My bibliography  Save this article

Strategic agricultural land-use planning in response to water-supplier variation in a China’s rural region

Author

Listed:
  • Lu, H.W.
  • Huang, G.H.
  • Zhang, Y.M.
  • He, L.

Abstract

A strategic agricultural land-use planning approach was proposed in response to water-supplier variation under parameter uncertainty. It was capable of examining the implication of various water-suppliers on agricultural land-use planning problems, interpreting the response of land-use schemes to water-supply patterns with respect to a variety of systematic features, and handling uncertain parameters widely existing in many real-world practices. A case study in central-south China demonstrated the applicability of the proposed approach. The modeling inputs of economic-related parameters were identified as intervals based on statistic data, while those related to water availability were predicted through a distributed hydrological model. Scenarios of (1) no groundwater supplementation, (2) 20% of groundwater supplementation, and (3) 40% of groundwater supplementation to total water demand were considered to generate optimal land-use plans. Reasonable results were obtained, which were then used to interpret the implication of water-supplier variation on planning sustainable development strategies. A special rate of groundwater supplementation (i.e. 20.1%) was also suggested to the manager to facilitate regulating long-term water-allocation schemes.

Suggested Citation

  • Lu, H.W. & Huang, G.H. & Zhang, Y.M. & He, L., 2012. "Strategic agricultural land-use planning in response to water-supplier variation in a China’s rural region," Agricultural Systems, Elsevier, vol. 108(C), pages 19-28.
  • Handle: RePEc:eee:agisys:v:108:y:2012:i:c:p:19-28
    DOI: 10.1016/j.agsy.2011.10.007
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0308521X11001570
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agsy.2011.10.007?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. El-Shishiny, Hisham, 1988. "A goal programming model for planning the development of newly reclaimed lands," Agricultural Systems, Elsevier, vol. 26(4), pages 245-261.
    2. Raju, K. S & Kumar, D. N, 1999. "Multicriterion decision making in irrigation planning," Agricultural Systems, Elsevier, vol. 62(2), pages 117-129, November.
    3. Raju, Komaragiri Srinivasa & Pillai, C. R. S., 1999. "Multicriterion decision making in performance evaluation of an irrigation system," European Journal of Operational Research, Elsevier, vol. 112(3), pages 479-488, February.
    4. Matthews, K.B. & Buchan, K. & Sibbald, A.R. & Craw, S., 2006. "Combining deliberative and computer-based methods for multi-objective land-use planning," Agricultural Systems, Elsevier, vol. 87(1), pages 18-37, January.
    5. H. Lu & G. Huang & G. Zeng & I. Maqsood & L. He, 2008. "An Inexact Two-stage Fuzzy-stochastic Programming Model for Water Resources Management," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 22(8), pages 991-1016, August.
    6. Mendoza, Guillermo A. & Bruce Bare, B. & Zhou, Zehai, 1993. "A fuzzy multiple objective linear programming approach to forest planning under uncertainty," Agricultural Systems, Elsevier, vol. 41(3), pages 257-274.
    7. Shakya, Keshab M. & Leuschner, William A., 1990. "A multiple objective land use planning model for Nepalese hills farms," Agricultural Systems, Elsevier, vol. 34(2), pages 133-149.
    8. Riquelme, Francisco J. Montero & Ramos, Antonio Brasa, 2005. "Land and water use management in vine growing by using geographic information systems in Castilla-La Mancha, Spain," Agricultural Water Management, Elsevier, vol. 77(1-3), pages 82-95, August.
    9. Glen, J. J. & Tipper, R., 2001. "A mathematical programming model for improvement planning in a semi-subsistence farm," Agricultural Systems, Elsevier, vol. 70(1), pages 295-317, October.
    10. He, Li & Huang, Guo H. & Lu, Hongwei, 2011. "Bivariate interval semi-infinite programming with an application to environmental decision-making analysis," European Journal of Operational Research, Elsevier, vol. 211(3), pages 452-465, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yang, Gaiqiang & Guo, Ping & Huo, Lijuan & Ren, Chongfeng, 2015. "Optimization of the irrigation water resources for Shijin irrigation district in north China," Agricultural Water Management, Elsevier, vol. 158(C), pages 82-98.
    2. Li, Mo & Fu, Qiang & Singh, Vijay P. & Liu, Dong & Li, Tianxiao & Zhou, Yan, 2020. "Managing agricultural water and land resources with tradeoff between economic, environmental, and social considerations: A multi-objective non-linear optimization model under uncertainty," Agricultural Systems, Elsevier, vol. 178(C).
    3. Vasu, Duraisamy & Srivastava, Rajeev & Patil, Nitin G. & Tiwary, Pramod & Chandran, Padikkal & Kumar Singh, Surendra, 2018. "A comparative assessment of land suitability evaluation methods for agricultural land use planning at village level," Land Use Policy, Elsevier, vol. 79(C), pages 146-163.
    4. H. Lu & G. Huang & L. He, 2012. "Simulation-Based Inexact Rough-Interval Programming for Agricultural Irrigation Management: A Case Study in the Yongxin County, China," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(14), pages 4163-4182, November.
    5. Ali Azarnivand & Mohammad Ebrahim Banihabib, 2017. "A Multi-level Strategic Group Decision Making for Understanding and Analysis of Sustainable Watershed Planning in Response to Environmental Perplexities," Group Decision and Negotiation, Springer, vol. 26(3), pages 629-648, May.
    6. Yang, Gaiqiang & Liu, Lei & Guo, Ping & Li, Mo, 2017. "A flexible decision support system for irrigation scheduling in an irrigation district in China," Agricultural Water Management, Elsevier, vol. 179(C), pages 378-389.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hajkowicz, Stefan & Higgins, Andrew, 2008. "A comparison of multiple criteria analysis techniques for water resource management," European Journal of Operational Research, Elsevier, vol. 184(1), pages 255-265, January.
    2. Abbas Amini Fasakhodi & Seyed Nouri & Manouchehr Amini, 2010. "Water Resources Sustainability and Optimal Cropping Pattern in Farming Systems; A Multi-Objective Fractional Goal Programming Approach," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(15), pages 4639-4657, December.
    3. Niu, Geng & Zheng, Yi & Han, Feng & Qin, Huapeng, 2019. "The nexus of water, ecosystems and agriculture in arid areas: A multiobjective optimization study on system efficiencies," Agricultural Water Management, Elsevier, vol. 223(C), pages 1-1.
    4. West, Jason, 2019. "Multi-criteria evolutionary algorithm optimization for horticulture crop management," Agricultural Systems, Elsevier, vol. 173(C), pages 469-481.
    5. Burak, Selmin & Samanlioglu, Funda & Ülker, Duygu, 2022. "Evaluation of irrigation methods in Söke Plain with HF-AHP-PROMETHEE II hybrid MCDM method," Agricultural Water Management, Elsevier, vol. 271(C).
    6. Ahumada, Omar & Villalobos, J. Rene, 2009. "Application of planning models in the agri-food supply chain: A review," European Journal of Operational Research, Elsevier, vol. 196(1), pages 1-20, July.
    7. Stefan Hajkowicz & Kerry Collins, 2007. "A Review of Multiple Criteria Analysis for Water Resource Planning and Management," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 21(9), pages 1553-1566, September.
    8. Behzadian, Majid & Kazemzadeh, R.B. & Albadvi, A. & Aghdasi, M., 2010. "PROMETHEE: A comprehensive literature review on methodologies and applications," European Journal of Operational Research, Elsevier, vol. 200(1), pages 198-215, January.
    9. Morais, Danielle Costa & de Almeida, Adiel Teixeira, 2007. "Group decision-making for leakage management strategy of water network," Resources, Conservation & Recycling, Elsevier, vol. 52(2), pages 441-459.
    10. Li, Xiaojuan & Kang, Shaozhong & Niu, Jun & Du, Taisheng & Tong, Ling & Li, Sien & Ding, Risheng, 2017. "Applying uncertain programming model to improve regional farming economic benefits and water productivity," Agricultural Water Management, Elsevier, vol. 179(C), pages 352-365.
    11. Zhang, Zepeng & Wang, Qingzheng & Guan, Qingyu & Xiao, Xiong & Mi, Jimin & Lv, Songjian, 2023. "Research on the optimal allocation of agricultural water and soil resources in the Heihe River Basin based on SWAT and intelligent optimization," Agricultural Water Management, Elsevier, vol. 279(C).
    12. Juliana Martins Ruzante & Valerie J. Davidson & Julie Caswell & Aamir Fazil & John A. L. Cranfield & Spencer J. Henson & Sven M. Anders & Claudia Schmidt & Jeffrey M. Farber, 2010. "A Multifactorial Risk Prioritization Framework for Foodborne Pathogens," Risk Analysis, John Wiley & Sons, vol. 30(5), pages 724-742, May.
    13. Chen, Shu & Shao, Dongguo & Tan, Xuezhi & Gu, Wenquan & Lei, Caixiu, 2017. "An interval multistage classified model for regional inter- and intra-seasonal water management under uncertain and nonstationary condition," Agricultural Water Management, Elsevier, vol. 191(C), pages 98-112.
    14. Moreau, Pierre & Ruiz, Laurent & Vertès, Françoise & Baratte, Christine & Delaby, Luc & Faverdin, Philippe & Gascuel-Odoux, Chantal & Piquemal, Benoit & Ramat, Eric & Salmon-Monviola, Jordy & Durand, , 2013. "CASIMOD’N: An agro-hydrological distributed model of catchment-scale nitrogen dynamics integrating farming system decisions," Agricultural Systems, Elsevier, vol. 118(C), pages 41-51.
    15. Gilmour, J.K. & Letcher, R.A. & Jakeman, A.J., 2005. "Analysis of an integrated model for assessing land and water policy options," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 69(1), pages 57-77.
    16. Kannan, Devika & Jabbour, Ana Beatriz Lopes de Sousa & Jabbour, Charbel José Chiappetta, 2014. "Selecting green suppliers based on GSCM practices: Using fuzzy TOPSIS applied to a Brazilian electronics company," European Journal of Operational Research, Elsevier, vol. 233(2), pages 432-447.
    17. Yang, Gaiqiang & Guo, Ping & Huo, Lijuan & Ren, Chongfeng, 2015. "Optimization of the irrigation water resources for Shijin irrigation district in north China," Agricultural Water Management, Elsevier, vol. 158(C), pages 82-98.
    18. repec:kqi:journl:2017-2-1-2 is not listed on IDEAS
    19. Komaragiri Raju & A. Vasan, 2007. "Multi attribute utility theory for irrigation system evaluation," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 21(4), pages 717-728, April.
    20. Ahmed El-Geneidy & David Levinson, 2011. "Place Rank: Valuing Spatial Interactions," Networks and Spatial Economics, Springer, vol. 11(4), pages 643-659, December.
    21. Yan Liu & Yongjiu Feng & Robert Gilmore Pontius, 2014. "Spatially-Explicit Simulation of Urban Growth through Self-Adaptive Genetic Algorithm and Cellular Automata Modelling," Land, MDPI, vol. 3(3), pages 1-20, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agisys:v:108:y:2012:i:c:p:19-28. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agsy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.