IDEAS home Printed from https://ideas.repec.org/a/eee/agisys/v104y2011i8p600-608.html
   My bibliography  Save this article

Modelling the fate of water and nitrogen in the mixed vegetable farming systems of northern Tasmania, Australia

Author

Listed:
  • Lisson, S.N.
  • Cotching, W.E.

Abstract

A combination of high input management systems, high annual rainfall and deep, permeable soils in northern Tasmania create conditions that are conducive to high drainage and nitrogen losses below the root zone. An understanding of the extent and mechanism of such losses will enable farm managers and their consultants to identify and implement more sustainable management practices that minimise potential adverse financial and environmental consequences. Analysing the fate of water and nutrients in farming systems is complex and influenced by a wide range of factors including management, soil characteristics, seasonal climate variability and management history of the paddock/farm in question. This paper describes a novel farm system modelling approach based on the model APSIM, for analysing the fate of nitrogen and water in mixed vegetable-based farming enterprises. The study was based on seven case farms across the Panatana catchment in northern Tasmania. Substantial simulated drainage losses (>100 mm average seasonal loss) were apparent for all crop and rotation elements across all farms in response to the surplus between crop water supply and crop water use. Crop nitrogen demand was found to be close to crop nitrogen supply for all crop and pasture rotation elements with the exception of potato, which had an average surplus nitrogen supply of 89 kg N/ha. This resulted in potato having much higher nitrate nitrogen leaching losses (32 kg N/ha) compared to other crops (

Suggested Citation

  • Lisson, S.N. & Cotching, W.E., 2011. "Modelling the fate of water and nitrogen in the mixed vegetable farming systems of northern Tasmania, Australia," Agricultural Systems, Elsevier, vol. 104(8), pages 600-608, October.
  • Handle: RePEc:eee:agisys:v:104:y:2011:i:8:p:600-608
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0308521X11000850
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gunasekhar Nachimuthu & Neil V. Halpin & Michael J. Bell, 2017. "Impact of Practice Change on Runoff Water Quality and Vegetable Yield—An On-Farm Case Study," Agriculture, MDPI, vol. 7(3), pages 1-22, March.
    2. Ma, Qianhu & You, Yongliang & Shen, Yuying & Wang, Zikui, 2024. "Adjusting sowing window to mitigate climate warming effects on forage oats production on the Tibetan Plateau," Agricultural Water Management, Elsevier, vol. 293(C).
    3. Phelan, David C. & Harrison, Matthew T. & McLean, Greg & Cox, Howard & Pembleton, Kieth G. & Dean, Geoff J. & Parsons, David & do Amaral Richter, Maria E. & Pengilley, Georgie & Hinton, Sue J. & Moham, 2018. "Advancing a farmer decision support tool for agronomic decisions on rainfed and irrigated wheat cropping in Tasmania," Agricultural Systems, Elsevier, vol. 167(C), pages 113-124.
    4. Chapagain, Ranju & Huth, Neil & Remenyi, Tomas A. & Mohammed, Caroline L. & Ojeda, Jonathan J., 2023. "Assessing the effect of using different APSIM model configurations on model outputs," Ecological Modelling, Elsevier, vol. 483(C).
    5. Tang, Jianzhao & Xiao, Dengpan & Wang, Jing & Fang, Quanxiao & Zhang, Jun & Bai, Huizi, 2021. "Optimizing water and nitrogen managements for potato production in the agro-pastoral ecotone in North China," Agricultural Water Management, Elsevier, vol. 253(C).
    6. Wakeyo, Mekonnen B. & Gardebroek, Cornelis, 2013. "Does water harvesting induce fertilizer use among smallholders? Evidence from Ethiopia," Agricultural Systems, Elsevier, vol. 114(C), pages 54-63.

    More about this item

    Keywords

    APSIM Leaching Drainage;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agisys:v:104:y:2011:i:8:p:600-608. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agsy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.