IDEAS home Printed from https://ideas.repec.org/a/ect/emjrnl/v8y2005i3p306-322.html
   My bibliography  Save this article

Artificial regression testing in the GARCH-in-mean model

Author

Listed:
  • Riccardo Lucchetti
  • Eduardo Rossi

Abstract

The issue of finite-sample inference in Generalised Autoregressive Conditional Heteroskedasticity (GARCH)-like models has seldom been explored in the theoretical literature, although its potential relevance for practitioners is obvious. In some cases, asymptotic theory may provide a very poor approximation to the actual distribution of the estimators in finite samples. The aim of this paper is to propose the application of the so-called double length regressions (DLR) to GARCH-in-mean models for inferential purposes. As an example, we focus on the issue of Lagrange Multiplier tests on the risk premium parameter. Simulation evidence suggests that DLR-based Lagrange Multiplier (LM) test statistics provide a much better testing framework than the more commonly used LM tests based on the outer product of gradients (OPG) in terms of actual test size, especially when the GARCH process exhibits high persistence in volatility. This result is consistent with previous studies on the subject. Copyright 2005 Royal Economic Society

Suggested Citation

  • Riccardo Lucchetti & Eduardo Rossi, 2005. "Artificial regression testing in the GARCH-in-mean model," Econometrics Journal, Royal Economic Society, vol. 8(3), pages 306-322, December.
  • Handle: RePEc:ect:emjrnl:v:8:y:2005:i:3:p:306-322
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Riccardo LUCCHETTI & Giulio PALOMBA, 2006. "Forecasting US bond yields at weekly frequency," Working Papers 261, Universita' Politecnica delle Marche (I), Dipartimento di Scienze Economiche e Sociali.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ect:emjrnl:v:8:y:2005:i:3:p:306-322. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley-Blackwell Digital Licensing or Christopher F. Baum (email available below). General contact details of provider: https://edirc.repec.org/data/resssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.