IDEAS home Printed from https://ideas.repec.org/a/ect/emjrnl/v13y2010i2p245-270.html
   My bibliography  Save this article

ECF estimation of Markov models where the transition density is unknown

Author

Listed:
  • George J. Jiang
  • John L. Knight

Abstract

In this paper, we consider the estimation of Markov models where the transition density is unknown. The approach we propose is based on the empirical characteristic function estimation procedure with an approximate optimal weight function. The approximate optimal weight function is obtained through an Edgeworth/Gram--Charlier expansion of the logarithmic transition density of the Markov process. We derive the estimating equations and demonstrate that they are similar to the approximate maximum likelihood estimation (AMLE). However, in contrast to the conventional AMLE our approach ensures the consistency of the estimator even with the approximate likelihood function. We illustrate our approach with examples of various Markov processes. Monte Carlo simulations are performed to investigate the finite sample properties of the proposed estimator in comparison with other methods. Copyright The Author(s). Journal compilation Royal Economic Society 2010.

Suggested Citation

  • George J. Jiang & John L. Knight, 2010. "ECF estimation of Markov models where the transition density is unknown," Econometrics Journal, Royal Economic Society, vol. 13(2), pages 245-270, July.
  • Handle: RePEc:ect:emjrnl:v:13:y:2010:i:2:p:245-270
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Giesecke, K. & Schwenkler, G., 2019. "Simulated likelihood estimators for discretely observed jump–diffusions," Journal of Econometrics, Elsevier, vol. 213(2), pages 297-320.
    2. Todorov, Viktor & Tauchen, George & Grynkiv, Iaryna, 2011. "Realized Laplace transforms for estimation of jump diffusive volatility models," Journal of Econometrics, Elsevier, vol. 164(2), pages 367-381, October.
    3. Pakorn Aschakulporn & Jin E. Zhang, 2022. "Bakshi, Kapadia, and Madan (2003) risk‐neutral moment estimators: An affine jump‐diffusion approach," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 42(3), pages 365-388, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ect:emjrnl:v:13:y:2010:i:2:p:245-270. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley-Blackwell Digital Licensing or Christopher F. Baum (email available below). General contact details of provider: https://edirc.repec.org/data/resssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.