IDEAS home Printed from https://ideas.repec.org/a/ect/emjrnl/v13y2010i1p40-62.html
   My bibliography  Save this article

Smoothness adaptive average derivative estimation

Author

Listed:
  • Marcia M. A. Schafgans
  • Victoria Zinde-Walsh

Abstract

Many important models utilize estimation of average derivatives of the conditional mean function. Asymptotic results in the literature on density weighted average derivative estimators (ADE) focus on convergence at parametric rates; this requires making stringent assumptions on smoothness of the underlying density; here we derive asymptotic properties under relaxed smoothness assumptions. We adapt to the unknown smoothness in the model by consistently estimating the optimal bandwidth rate and using linear combinations of ADE estimators for different kernels and bandwidths. Linear combinations of estimators (i) can have smaller asymptotic mean squared error (AMSE) than an estimator with an optimal bandwidth and (ii) when based on estimated optimal rate bandwidth can adapt to unknown smoothness and achieve rate optimality. Our combined estimator minimizes the trace of estimated MSE of linear combinations. Monte Carlo results for ADE confirm good performance of the combined estimator. Copyright (C) The Author(s). Journal compilation (C) Royal Economic Society 2010.

Suggested Citation

  • Marcia M. A. Schafgans & Victoria Zinde-Walsh, 2010. "Smoothness adaptive average derivative estimation," Econometrics Journal, Royal Economic Society, vol. 13(1), pages 40-62, February.
  • Handle: RePEc:ect:emjrnl:v:13:y:2010:i:1:p:40-62
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yulia Kotlyarova & Marcia M. A. Schafgans & Victoria Zinde-Walsh, 2021. "Rates of Expansions for Functional Estimators," Journal of Quantitative Economics, Springer;The Indian Econometric Society (TIES), vol. 19(1), pages 121-139, December.
    2. Xiaohong Chen & David Jacho-Chávez & Oliver Linton, 2012. "Averaging of moment condition estimators," CeMMAP working papers 26/12, Institute for Fiscal Studies.
    3. Ai, Chunrong & Chen, Xiaohong, 2012. "The semiparametric efficiency bound for models of sequential moment restrictions containing unknown functions," Journal of Econometrics, Elsevier, vol. 170(2), pages 442-457.
    4. repec:cep:stiecm:/2011/557 is not listed on IDEAS

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ect:emjrnl:v:13:y:2010:i:1:p:40-62. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley-Blackwell Digital Licensing or Christopher F. Baum (email available below). General contact details of provider: https://edirc.repec.org/data/resssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.