IDEAS home Printed from https://ideas.repec.org/a/ect/emjrnl/v10y2007i2p426-438.html
   My bibliography  Save this article

Two-stage estimation of limited dependent variable models with errors-in-variables

Author

Listed:
  • Liqun Wang
  • Cheng Hsiao

Abstract

This paper deals with censored or truncated regression models where the explanatory variables are measured with additive errors. We propose a two-stage estimation procedure that combines the instrumental variable method and the minimum distance estimation. This approach produces consistent and asymptotically normally distributed estimators for model parameters. When the predictor and instrumental variables are normally distributed, we also propose a maximum likelihood based estimator and a two-stage moment estimator. Simulation studies show that all proposed estimators perform satisfactorily for relatively small samples and relatively high degree of censoring. In addition, the maximum likelihood based estimators are fairly robust against non-normal and /or heteroskedastic random errors in our simulations. The method can be generalized to panel data models. Copyright Royal Economic Society 2007

Suggested Citation

  • Liqun Wang & Cheng Hsiao, 2007. "Two-stage estimation of limited dependent variable models with errors-in-variables," Econometrics Journal, Royal Economic Society, vol. 10(2), pages 426-438, July.
  • Handle: RePEc:ect:emjrnl:v:10:y:2007:i:2:p:426-438
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Liqun & Hsiao, Cheng, 2011. "Method of moments estimation and identifiability of semiparametric nonlinear errors-in-variables models," Journal of Econometrics, Elsevier, vol. 165(1), pages 30-44.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ect:emjrnl:v:10:y:2007:i:2:p:426-438. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley-Blackwell Digital Licensing or Christopher F. Baum (email available below). General contact details of provider: https://edirc.repec.org/data/resssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.